3. Espaces $L^1(E)$, $L^2(E)$ et $L^\infty(E)$

<u>Exercice 1</u>. (a) Pour tout $k \in \mathbb{N}_0$, établir que la fonction $x \mapsto \sin(kx)$ appartient à $L^1([0, 2\pi])$, $L^2([0, 2\pi])$ et $L^{\infty}([0, 2\pi])$, mais que ses normes dans ces espaces sont différentes.

- (b) Déterminer la norme $\|\chi_{\mathbb{O}}\|_{L^{\infty}(\mathbb{R})}$.
- (c) Donner un exemple de fonction intégrable sur \mathbb{R} dont la norme est 1.

Exercice 2. On définit les fonctions f et g sur \mathbb{R} par

$$f(x) = e^{-|x|}$$
 et $g(x) = \cos(2\pi x)$.

- (a) Déterminer si possible les normes de f et g dans $L^1(\mathbb{R})$, $L^2(\mathbb{R})$ et $L^{\infty}(\mathbb{R})$.
- (b) Même question pour g dans $L^{1}([0,1]), L^{2}([0,1])$ et $L^{\infty}([0,1])$.
- (c) Calculer si possible le produit scalaire dans $L^2(\mathbb{R})$ des fonctions ifg et if.

Exercice 3. Pour tout $m \in \mathbb{N}_0$, on pose

$$f_m(x) = \frac{1}{m} \chi_{[-m,m]}(x), \quad x \in \mathbb{R}.$$

- (a) Pour tout $m \in \mathbb{N}_0$, déterminer à quels espaces $L^1(\mathbb{R})$, $L^2(\mathbb{R})$, $L^\infty(\mathbb{R})$ appartient la fonction f_m et en calculer les normes correspondantes.
- (b) Etudier la convergence ponctuelle et la convergence uniforme de la suite $(f_m)_{m\in\mathbb{N}_0}$ sur \mathbb{R} .
- (c) Etudier la convergence de la suite $(f_m)_{m\in\mathbb{N}_0}$ dans chacun des espaces $L^1(\mathbb{R})$, $L^2(\mathbb{R})$ et $L^\infty(\mathbb{R})$.

Exercice 4. Pour tout $m \in \mathbb{N}_0$, on pose

$$f_m(x) = m^{3/2} x e^{-mx}, \quad x \in [0, +\infty[.$$

- (a) Pour tout $m \in \mathbb{N}_0$, déterminer à quels espaces $L^1([0, +\infty[), L^2([0, +\infty[), L^\infty([0, +\infty[)$ appartient la fonction f_m et en calculer les normes correspondantes.
- (b) Etudier la convergence ponctuelle et la convergence uniforme de la suite $(f_m)_{m\in\mathbb{N}_0}$ sur $[0,+\infty[$.
- (c) Etudier la convergence de la suite $(f_m)_{m\in\mathbb{N}_0}$ dans chacun des espaces $L^1([0,+\infty[),L^2([0,+\infty[)$ et $L^\infty([0,+\infty[)$.

Exercice 5. Pour tout $m \in \mathbb{N}$, on pose

$$f_m(x) = e^{-2x} \frac{x^m}{m!}, \quad x \in \mathbb{R}.$$

- (a) Calculer (si possible) la norme de f_m dans $L^1([0, +\infty[), L^2([0, +\infty[) \text{ et } L^\infty([0, +\infty[) \text{ pour tout } m \in \mathbb{N}.$
- (b) Pour tout $M \in \mathbb{N}$, on pose

$$F_M = \sum_{m=0}^{M} f_m.$$

- (1) Etudier la convergence ponctuelle de la suite $(F_M)_{M\in\mathbb{N}}$ sur $[0, +\infty[$ ainsi que la convergence uniforme sur $[0, +\infty[$ et sur tout compact de $[0, +\infty[$.
- (2) Etudier la convergence de la suite $(F_M)_{M\in\mathbb{N}}$ dans $L^1([0,+\infty[)])$ et $L^2([0,+\infty[)])$.

Exercice 6. Comparer les espaces $L^1([-1,1])$, $L^2([-1,1])$ et $L^\infty([-1,1])$ vis-à-vis de l'inclusion. Comparer également les normes (en termes d'inégalités entre celles-ci).

Exercice 7. Montrer que, pour tous x, y > 0, on a

$$\Gamma\left(\frac{x+y}{2}\right) \le \sqrt{\Gamma(x)\Gamma(y)}.$$

— Exercices destinés aux mathématiciens —

Exercice 8. Soit E une partie mesurable de \mathbb{R}^n .

- (a) Si $f_m \to f$ dans $L^1(E)$ et $g_m \to g$ dans $L^{\infty}(E)$, montrer que $f_m g_m \to f g$ dans $L^1(E)$.
- (b) Si $f_m \to f$ dans $L^2(E)$ et $g_m \to g$ dans $L^2(E)$, montrer que $f_m g_m \to f g$ dans $L^1(E)$.

Exercice 9. Soient $a, b \in \mathbb{R}$ tels que a < b. Si $f \in C_0([a, b]) \cap C_1(]a, b[)$ et si $Df \in L^2(]a, b[)$, démontrer que

$$|f(b) - f(a)|^2 \le (b - a) ||Df||_{L^2([a,b[))}^2$$

Exercice 10. Pour tout $n \in \mathbb{N}_0$, on pose

$$\delta_n(x) = \frac{n}{\pi(1+n^2x^2)}, \quad x \in \mathbb{R}.$$

- (a) Examiner la convergence ponctuelle et uniforme sur \mathbb{R} de la suite $(\delta_n)_{n\in\mathbb{N}_0}$.
- (b) Les fonctions δ_n sont-elles dans $L^1(\mathbb{R})$, dans $L^2(\mathbb{R})$ et/ou dans $L^{\infty}(\mathbb{R})$? Si c'est le cas, examiner la convergence de la suite dans les espaces auxquels les fonctions appartiennent.
- (c) Montrer que pour tout $n \in \mathbb{N}_0$, on a

$$\int_{\mathbb{R}} \delta_n(x) \, dx = 1.$$

(d) Montrer que

$$\lim_{n \to +\infty} \int_{\mathbb{R}} \delta_n(x) \varphi(x) \, dx = \varphi(0)$$

pour tout $\varphi \in \mathcal{D}(\mathbb{R})$ (i.e. pour tout $\varphi \in C_{\infty}(\mathbb{R})$ à support compact dans \mathbb{R}).

<u>Exercice 11</u>. Soient E un ensemble mesurable de \mathbb{R}^n et $(f_m)_{m\in\mathbb{N}}$ une suite de fonctions qui converge pp sur E vers la fonction f. Montrer que si $(f_m)_{m\in\mathbb{N}}$ converge dans $L^p(E)$ avec $p \in \{1, 2, \infty\}$, alors sa limite dans $L^p(E)$ est encore f.