Travail dirigé 1

Exercice 1. Les affirmations suivantes sont-elles vraies ou fausses? Justifier.

- (a) La fonction $x \mapsto e^{-i\pi x^2}$ appartient à l'espace $L^2(\mathbb{R})$.
- (b) Si celui-ci existe, le produit de convolution de deux fonctions impaires est impair.
- (c) Si une suite de fonctions converge dans $L^2([0,1])$, elle converge aussi dans $L^1([0,1])$.
- (d) Il existe une fonction (non identiquement nulle) appartenant à $L^{\infty}([0,1])$ telle que ses normes dans $L^{1}([0,1]), L^{2}([0,1])$ et $L^{\infty}([0,1])$ sont égales.

Exercice 2. (a) Calculer la valeur de $\Gamma(7/2)$ et de $B(\frac{1}{2}, \frac{3}{2})$.

(b) Pour quelles valeurs des réels α et β les fonctions $x \mapsto x^{\alpha}$ et $x \mapsto (1-x)^{\beta}$ sont-elles de carré intégrable sur]0,1[?] Montrer l'inégalité

$$B(\alpha+1,\beta+1) \leq \frac{1}{\sqrt{(1+2\alpha)(1+2\beta)}}.$$

(c) Montrer que la fonction Γ est convexe sur $]0, +\infty[$.

Exercice 3. Pour tout $n \in \mathbb{N}_0$, on pose

$$f_n(x) = \begin{cases} 1 & \text{si } x \in [-1, 0[\\ \sqrt{1 - nx} & \text{si } x \in [0, 1/n[\\ 0 & \text{si } x \in [1/n, 1] \end{cases}.$$

- (a) Etudier la convergence ponctuelle de la suite $(f_n)_{n\in\mathbb{N}_0}$ sur [-1,1].
- (b) Etudier la convergence uniforme de cette suite sur [-1,1], sur [-1,0], sur [0,1] et sur les fermés bornés inclus dans [0,1].
- (c) Etudier la convergence de cette suite dans $L^1([-1,1])$ et $L^2([-1,1])$.

Exercice 4. Soit $\alpha \in \mathbb{R}$. Pour tout $n \in \mathbb{N}_0$, on pose

$$f_n(x) = n^{\alpha} x e^{-n\frac{x^2}{2}}, \quad x \in \mathbb{R}.$$

- (a) Pour quelles valeurs de α la suite $(f_n)_{n\in\mathbb{N}_0}$ converge-t-elle (1) ponctuellement sur \mathbb{R} , (2) uniformément sur \mathbb{R} , (3) uniformément sur tout compact de \mathbb{R}_0 , (4) dans $L^1(\mathbb{R})$, (5) dans $L^2(\mathbb{R})$?
- (b) Dans la suite, on suppose que $\alpha = 1$.
 - (1) Montrer que la fonction

$$S = \sum_{n=1}^{+\infty} f_n$$

est définie sur \mathbb{R} et continue sur \mathbb{R}_0 .

(2) Calculer S(x) pour tout $x \in \mathbb{R}_0$. En déduire que la fonction S n'est pas continue en 0.

Exercice 5. La densité de probabilité d'une variable aléatoire gaussienne d'écart-type $\sigma > 0$ est donnée par la fonction G_{σ} définie par

$$G_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-x^2}{2\sigma^2}\right), \quad x \in \mathbb{R}.$$

(a) Vérifier que

$$\int_{\mathbb{R}} G_{\sigma}(x) dx = 1, \quad \int_{\mathbb{R}} x G_{\sigma}(x) dx = 0 \quad \text{et} \quad \int_{\mathbb{R}} x^{2} G_{\sigma}(x) dx = \sigma^{2}.$$

(b) Pour tous $\sigma, \tau > 0$, établir que $G_{\sigma} \star G_{\tau} = G_{\sqrt{\sigma^2 + \tau^2}}$ sur \mathbb{R}

Exercice 6. Soit la fonction f définie sur \mathbb{R} par

$$f(x) = \left\{ \begin{array}{ll} \cos(x) & \text{si } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ 0 & \text{sinon} \end{array} \right..$$

- (a) Montrer que le produit de convolution $f \star f$ est défini sur \mathbb{R} et déterminer son expression en tout point de \mathbb{R} . En déduire la valeur de $(f \star f)(\frac{\pi}{2})$.
- (b) Pour $n \in \mathbb{N}_0$, on pose $\Psi_n = f \star \ldots \star f$ (produit de convolution composé de n facteurs f). Si on note [f] le support de f, montrer que Ψ_n est nul en dehors de n[f].
- (c) Calculer si possible la valeur de l'intégrale

$$\int_{\mathbb{R}} \Psi_n(x) \, dx.$$

- Exercices destinés aux mathématiciens -

Exercice 7. Soit E une partie mesurable de \mathbb{R}^n . Si $f_m \to f$ dans $L^2(E)$ et $g_m \to g$ dans $L^\infty(E)$, montrer que $f_m g_m \to f g$ dans $L^2(E)$.

Exercice 8. Montrer que si $f \in L^2(\mathbb{R}^n)$ est tel que f * f * f * = 0, alors f = 0 presque partout.

L. Simons & F. Bastin -15 octobre 2014