0. Compléments

<u>Exercice 1</u>. Soit a un paramètre réel. Etudier la convergence de la suite $(x_m)_{m\in\mathbb{N}_0}$ lorsque le terme général x_m est égal à

(a)
$$x_m = 2^m a^m$$
 (b) $x_m = \frac{m^2 + 2}{m^2 + m + 1} a^m$ (c) $x_m = \sum_{k=0}^m \frac{a}{(m+k)^2}$ (d) $x_m = \frac{a^{\ln(m)}}{m^a}$

Exercice 2. (a) Pour quelles valeurs du paramètre réel α , la fonction

$$x \mapsto \frac{\sin(x^2)}{x^{\alpha}}$$

est-elle intégrable sur]0,1[?

(b) Pour quelles valeurs du paramètre réel β , la fonction

$$x \mapsto x^{\beta}(e^{-x} - 1)$$

est-elle intégrable sur $]0, +\infty[?]$

Exercice 3. Calculer si possible les intégrales suivantes :

(a)
$$\int_0^1 \frac{x^a - x^b}{\ln(x)} dx \text{ pour tous } a, b > 1,$$

(b)
$$\int_0^{+\infty} e^{-bx} \frac{\sin(ax)}{x} dx$$
 pour tous $a \in \mathbb{R}$ et $b > 0$.

Exercice 4. (a) Soit $\Omega =]0, +\infty[\times]0, +\infty[$. Montrer que la fonction f définie par

$$f(x,y) = \frac{1}{(1+y)(1+yx^2)}$$

est intégrable sur Ω et calculer son intégrale.

(b) En déduire que la fonction

$$x \mapsto \frac{\ln(x)}{x^2 - 1}$$

est intégrable sur $]0, +\infty[$ et la valeur de son intégrale.