Analyse II, partie 1 – Travail dirigé

Exercice 1. Pour tout $m \in \mathbb{N}_0$, on pose

$$f_m(x) = \left(\frac{1}{m} - |x|\right) \chi_{[-1/m, 1/m]}, \quad x \in \mathbb{R}.$$

- 1. Représenter f_m pour quelques valeurs de m (dans un même repère orthonormé).
- 2. Examiner les convergences ponctuelles et uniformes de la suite $(f_m)_{m\in\mathbb{N}_0}$.
- 3. Examiner la convergence de cette suite dans $L^1(\mathbb{R})$ et $L^2(\mathbb{R})$.

Exercice 2. Pour tout $m \in \mathbb{N}_0$, on pose

$$\delta_m(x) = \frac{m}{\sqrt{\pi}} e^{-m^2 x^2}, \quad x \in \mathbb{R}.$$

- (a) Examiner la convergence ponctuelle et uniforme sur \mathbb{R} de la suite $(\delta_m)_{m\in\mathbb{N}_0}$.
- (b) Les fonctions δ_m sont-elles dans $L^1(\mathbb{R})$, dans $L^2(\mathbb{R})$ et/ou dans $L^{\infty}(\mathbb{R})$? Si c'est le cas, examiner la convergence de la suite dans les espaces auxquels les fonctions appartiennent.
- (c) Montrer que pour tout $m \in \mathbb{N}_0$, on a

$$\int_{\mathbb{R}} \delta_m(x) \, dx = 1.$$

Exercice 3. Soit la fonction h définie par

$$h(x) = \frac{1}{1+|x|}, \quad x \in \mathbb{R}.$$

Cette fonction appartient-elle à $L^1(\mathbb{R})$, $L^2(\mathbb{R})$ et $L^{\infty}(\mathbb{R})$? Si oui, en déterminer les normes correspondantes.

Exercice 4. Soit la fonction f définie sur \mathbb{R} par $f(x) = \sin(x)\chi_{]0,+\infty]}(x)$. Déterminer si possible le produit de convolution de f avec lui-même. Que vaut $(f \star f)(\pi)$?

Exercice 5. Soient les fonctions f et g définies sur \mathbb{R} par

$$f(x) = e^{-x} \chi_{]0,+\infty[}(x)$$
 et $g(x) = \frac{1}{1 - ix}$.

- (a) Ces fonctions f et g appartiennent-elles $L^1(\mathbb{R})$, $L^2(\mathbb{R})$ et $L^{\infty}(\mathbb{R})$? Si oui, en déterminer les normes correspondantes.
- (b) Si possible, déterminer $f \star f$ ainsi que la transforme de Fourier positive de f et de $f \star f$.
- (c) Montrer que la transforme de Fourier négative de g est nulle sur $]-\infty,0[$.
- (d) Déterminer la norme de la transforme de Fourier positive de f.

Exercice 6. Soit la fonction f définie sur $[-\pi, \pi]$ par f(x) = |x|.

- (a) Développer cette fonction en série trigonométrique de Fourier dans $L^2([-\pi,\pi])$. Exprimer votre réponse en utilisant uniquement des fonctions sin et cos et simplifier les calculs au maximum.
- (b) En déduire la valeur des sommes

$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} \quad \text{et} \quad \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^4}.$$

Exercice 7. Pour tout $m \in \mathbb{Z}$, on pose

$$f_m(x) = \frac{\sin(x - m\pi)}{x - m\pi}.$$

- 1. Démontrer que la suite $(f_m)_{m\in\mathbb{Z}}$ forme une suite orthogonale dans $L^2(\mathbb{R})$.
- 2. Déterminer la norme de f_m $(m \in \mathbb{Z})$ dans $L^2(\mathbb{R})$.
- 3. Démontrer que supp $(\hat{f}_m) \subseteq [-1, 1]$.