Répétition du cours d'Analyse III, 2e partie 3ème BM 25 Février 2010

- 1. Soit Ω un ouvert de \mathbb{R}^n . Démontrer que la distribution de Dirac dans Ω n'est pas une distribution associée à une fonction localement intégrable sur Ω .
- 2. Déterminer la dérivée seconde de la distribution associée à la fonction $|x|, x \in \mathbb{R}$ (même question pour $\sin(2x)\chi_{]0,+\infty[}(x), x \in \mathbb{R}$).
- 3. On se place dans $\mathcal{D}'(\mathbb{R})$. Déterminer la distribution suivante (simplifier au maximum l'expression)

$$e^x D\delta_0 + e^x \delta_0 + (\cos(x)) D\delta_0.$$

4. On se place dans \mathbb{R} . On pose

$$\Pi(x) = \begin{cases} 0 & \text{si } |x| \ge \frac{1}{2} \\ 1 & \text{si } |x| < \frac{1}{2} \end{cases}$$

et

$$\rho_k(x) = k\Pi(kx), k \in \mathbb{N}_0.$$

Si, pour tout k, u_k désigne la distribution dans \mathbb{R} associée à ρ_k , montrer que

$$\lim_{k \to +\infty} u_k(\varphi) = \delta_0(\varphi), \forall \varphi \in \mathcal{D}(\mathbb{R}).$$

5. Pour tout $\varepsilon > 0$, soit

$$u_{\varepsilon} = \frac{\delta_{\varepsilon} - \delta_{-\varepsilon}}{2\varepsilon}.$$

Montrer que l'application u définie par

$$u(\varphi) = \lim_{\varepsilon \to 0} u_{\varepsilon}(\varphi), \forall \varphi \in \mathcal{D}(\mathbb{R})$$

est une distribution et la déterminer. Cette distribution u est-elle une distribution associée à une fonction localement intégrable? Pourquoi?

6. Si $u \in \mathcal{D}'(\Omega)$ et $f \in C_{\infty}(\Omega)$, démontrer que $[fu] \subseteq [u] \cap [f]$.