Liste 1 – Rappels

Question 1. Examiner l'intégrabilité sur $]0, +\infty[$ de la fonction

$$x\mapsto \frac{\ln x^\alpha}{1+x^\alpha}$$

pour toutes les valeurs du réel non nul α .

Question 2. Soient les fonctions f et g définies sur $\mathbb R$ par

$$f(x) = x$$
 et $g(x) = e^{-x} \chi_{[0,+\infty[}(x).$

Montrer que le produit de convolution f * g est défini sur \mathbb{R} et donner sa valeur en tout point de \mathbb{R} .

Question 3. On considère la fonction g définie sur \mathbb{R} par

$$g(x) = \frac{1}{1 + ix}.$$

A quels espaces $L^1(\mathbb{R}), L^2(\mathbb{R}), L^\infty(\mathbb{R})$ appartient la fonction g? Quelle est la norme de g dans ces espaces?

Question 4.

- (4.1) Pour tout a > 0, calculer la transformée de Fourier de la fonction f_a définie sur \mathbb{R} par $f_a(x) = e^{-a|x|}$.
- (4.2) En déduire la valeur des intégrales

$$\int_0^{+\infty} \frac{\cos(bx)}{(x^2 + a^2)} dx \quad \text{et} \quad \int_0^{+\infty} \frac{1}{(x^2 + a^2)(x^2 + b^2)} dx$$

pour tous a, b > 0.

Question 5. Pour tout $m \in \mathbb{N}_0$, on considère la fonction f_m définie sur \mathbb{R} par $f_m(x) = m^2 x^2 e^{-mx}$.

- (5.1) Etudier la convergence ponctuelle de la suite $(f_m)_{m \in \mathbb{N}_0}$ sur $]0, +\infty[$.
- (5.2) Etudier la convergence uniforme de la suite $(f_m)_{m \in \mathbb{N}_0}$ sur $]0, +\infty[$.
- (5.3) Etudier la convergence uniforme de la suite $(f_m)_{m\in\mathbb{N}_0}$ sur tout compact K de $]0,+\infty[$.

Question 6. Si elle existe, déterminer la limite de la suite $(y_m)_{m\in\mathbb{N}_0}$ de terme général défini pour tout $m\in\mathbb{N}_0$ par

$$y_m = \int_1^{+\infty} \frac{\sin\left(\frac{\pi}{6} + \frac{x}{m}\right)}{x^2} dx.$$

Question 7 (Critère d'annulation pp). Soient Ω un ouvert non-vide de \mathbb{R}^n et $f \in L^1_{loc}(\Omega)$. Démontrer que f = 0 presque partout dans Ω si et seulement si

$$\int_{\Omega} f(x)\varphi(x)dx = 0 \text{ pour tout } \varphi \in \mathcal{D}(\Omega)^{1}.$$

^{1.} c'est-à-dire si et seulement si $u_f = 0$ dans $\mathcal{D}'(\Omega)$.