ANALYSE III, 2008-2009

Exercices-semaines des 16 et 23 février 2009

TD 1

Les réponses aux questions ci-dessous doivent être justifiées.

1. On donne $\varphi \in \mathcal{D}(\mathbb{R})$. On définit ensuite la suite φ_m $(m \in \mathbb{N}_0)$ par

$$\varphi_m(x) = \frac{\varphi(x)}{m}$$

$$\left(\text{resp.} \quad \varphi_m(x) = \frac{\varphi(x/m)}{m}, \quad \varphi(x) = m\varphi(mx), \quad \varphi(x) = m\varphi(x/m), \quad \varphi(x) = \frac{\varphi(mx)}{m}\right).$$

Examiner la convergence dans $\mathcal{D}(\mathbb{R})$ de cette suite φ_m .

2. Parmi les applications suivantes, quelles sont celles qui définissent des distributions dans \mathbb{R} ? En déterminer alors le support.

$$\varphi \in \mathcal{D}(\mathbb{R}) \mapsto D\varphi(1) \qquad \qquad \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \varphi(0) + D\varphi(1)$$

$$\varphi \in \mathcal{D}(\mathbb{R}) \mapsto \int_{0}^{1} \varphi(x) \, dx \qquad \qquad \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \int_{0}^{1} |\varphi(x)| \, dx$$

$$\varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{n=0}^{N} (D^{n}\varphi)(0) \qquad \qquad \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{n=0}^{+\infty} \varphi(n)$$

$$\varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{n=0}^{+\infty} (D^{n}\varphi)(0) \qquad \qquad \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{n=0}^{+\infty} (D^{n}\varphi)(n)$$

$$\varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{n=1}^{+\infty} \varphi(\frac{1}{n}) \qquad \qquad \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^{2}} \varphi(\frac{1}{n})$$

3. On considère les fonctions

$$f_m(x) = \begin{cases} e^{-x/m} & \text{si } x \ge 0\\ 0 & \text{si } x < 0. \end{cases}$$

- Esquisser f_1, f_2, f_3
- Pour m fixé, a-t-on $f_m \in L^1(\mathbb{R})$? (resp. $L^2(\mathbb{R})$? la fonction f_m définit-elle une distribution?)
- La limite $\lim_{m\to+\infty} f_m$ existe-t-elle au sens ponctuel (pp)? (resp. dans $L^1(\mathbb{R})$, $L^2(\mathbb{R})$, au sens distribution?)
- 4. Déterminer la dérivée seconde de la distribution associée à la fonction $|x|, x \in \mathbb{R}$ (même question pour $\sin(2x)\chi_{]0,+\infty[}(x), x \in \mathbb{R}$).
- 5. On se place dans $\mathcal{D}'(\mathbb{R})$. Déterminer la distribution suivante (simplifier au maximum l'expression)

$$e^x D\delta_0 + e^x \delta_0 + (\cos x) D\delta_0$$

6. On se place dans \mathbb{R} . On pose

$$\Pi(x) = \begin{cases} 0 & \text{si } |x| \ge \frac{1}{2} \\ 1 & \text{si } |x| < \frac{1}{2} \end{cases}, \quad \rho_k(x) = k\Pi(kx), \quad k \in \mathbb{N}_0.$$

Si, pour tout k, u_k désigne la distribution dans \mathbb{R} associée à ρ_k , montrer que

$$\lim_{k \to +\infty} u_k(\varphi) = \delta_0(\varphi), \quad \forall \varphi \in \mathcal{D}(\mathbb{R}).$$

7. On pose

$$u(\varphi) = -\lim_{\varepsilon \to 0^+} \left(\int_{|x| \ge \varepsilon} \frac{\varphi(x)}{x^2} dx - 2 \frac{\varphi(0)}{\varepsilon} \right), \quad \varphi \in \mathcal{D}(\mathbb{R}).$$

Montrer que u définit une distribution dans \mathbb{R} et que, si $f(x) = \ln |x|$, on a

$$u = D^2 u_{f}$$