TD 1 - 18 Mars 2013

Exercice 1. Les applications suivantes sont-elles des distributions dans \mathbb{R} ? Justifier. En cas de réponse affirmative, en déterminer le support.

$$u_1: \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \int_0^{+\infty} \varphi(x) (D\varphi)(x) dx, \qquad u_2: \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \max \left\{ \varphi(1), 0 \right\},$$

$$u_3: \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \int_0^1 (D\varphi)(x) dx, \qquad u_4: \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{n=1}^{+\infty} \frac{1}{n} \left(\varphi \left(\frac{1}{n} \right) - \varphi(0) \right),$$

$$u_5: \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{n=1}^{+\infty} \varphi(x_n) \text{ où } (x_n)_{n \in \mathbb{N}} \text{ est de suite de réels qui converge vers } 0.$$

Exercice 2. On pose

$$u(\varphi) = -\lim_{\varepsilon \to 0^+} \left(\int_{|x| \ge \varepsilon} \frac{\varphi(x)}{x^2} dx - 2 \frac{\varphi(0)}{\varepsilon} \right)$$

pour tout $\varphi \in \mathcal{D}(\mathbb{R})$. Montrer que u définit une distribution dans \mathbb{R} et que si $f(x) = \ln(|x|)$, $x \in \mathbb{R}_0$, alors $u = D^2 u_f$.

Exercice 3. Dans $\mathcal{D}'(\mathbb{R})$, simplifier au maximum l'expression suivante

$$e^x D\delta_0 + e^x \delta_0 + \cos(x) D\delta_0$$
.

Exercice 4. Soit la fonction

$$f(x) = \begin{cases} 1 - \cos(x) & \text{si} \quad x > 0, \\ 0 & \text{si} \quad x \le 0. \end{cases}$$

- Déterminer le plus grand naturel p pour lequel cette fonction est de classe C^p dans \mathbb{R} .
- Montrer qu'au sens distribution (dans ℝ), cette fonction vérifie l'équation

$$D^2 u + u = \chi_{]0, +\infty[}. \tag{1}$$

– En déduire la solution générale dans $\mathcal{D}'(\mathbb{R})$ de l'équation (1).

Exercice 5. Dans le plan \mathbb{R}^2 , on note

$$C = \{(x, y) \in \mathbb{R}^2 : y^2 - x^2 \ge 0, y \ge 0\}$$

et on désigne par u la distribution associée à la fonction caractéristique de \mathcal{C} . Calculer $\frac{\partial^2 u}{\partial v^2} - \frac{\partial^2 u}{\partial x^2}$

Exercice 6. Déterminer les distributions u de $\mathcal{D}'(\mathbb{R})$ qui vérifient les équations suivantes :

(a)
$$xu = u$$
 (b) $x^2u + u = 0$ (c) $x^2u = 0$
(d) $Du = u_Y$ (e) $xDu = u_Y$ (f) $xDu = \delta_0$

(d)
$$Du = u_Y$$
 (e) $xDu = u_Y$ (f) $xDu = \delta_0$

(q)
$$xDu + u = 0$$
 (h) $xDu + u = \delta_0$.

Exercice 7. Soient u une distribution dans \mathbb{R}^n et $\varphi \in \mathcal{D}(\mathbb{R}^n)$. Montrer que

$$\varphi u = 0 \Rightarrow u(\varphi) = 0$$

mais que la réciproque est fausse.