TD 2

Exercice 1. Soient $u, v \in \mathcal{D}'(\mathbb{R}^n)$ et $a \in \mathbb{R}^n$. On définit la fonction f par $f(x) = e^{\langle a, x \rangle}$ $(x \in \mathbb{R}^n)$. Si u et v sont composables, montrer que fu et fv sont composables et que f(u * v) = fu * fv.

Exercice 2. On désigne par $\mathcal{D}'_{+}(\mathbb{R})$ l'ensemble des distributions de \mathbb{R} à support inclus dans $[0, +\infty[$.

- 1. Montrer que si $u, v \in \mathcal{D}'_{+}(\mathbb{R})$, alors $u * v \in \mathcal{D}'_{+}(\mathbb{R})$.
- 2. Déterminer le neutre e pour * dans $\mathcal{D}'_{+}(\mathbb{R})$.
- 3. Si $u \in \mathcal{D}'_{+}(\mathbb{R})$ et s'il existe $v \in \mathcal{D}'_{+}(\mathbb{R})$ tel que u * v = e, montrer que v est unique. On note cet unique élément u^{-1} .
- 4. Si possible, calculer $(D\delta_0)^{-1}$.

Exercice 3. Soit

$$f(x) = \begin{cases} 2xe^x & \text{si } x \le 0\\ xe^x & \text{si } x > 0. \end{cases}$$

Si u désigne la distribution associée à f et si P est l'opérateur de dérivation $P(D) = D^2 - 2D + 1$, calculer la distribution

$$P(u*\delta_1).$$

Exercice 4. Soit u une distribution tempérée dans \mathbb{R} et soit $\alpha \in \mathbb{N}_0$.

- 1. Montrer que la distribution $D^{\alpha}u$ est également tempérée.
- 2. Montrer que

$$\mathcal{F}^{\pm}(D^{\alpha}u) = (\mp i)^{\alpha} f_{\alpha} \mathcal{F}^{\pm}u \text{ et } D^{\alpha}(\mathcal{F}^{\pm}u) = (\pm i)^{\alpha} \mathcal{F}^{\pm}(f_{\alpha}u)$$

où
$$f_{\alpha}(x) = x^{\alpha} \ (x \in \mathbb{R}).$$

3. La distribution $D^2\delta_0$ est-elle tempérée dans \mathbb{R} ? Si oui, en calculer la transformée de Fourier.

Exercice 5. Si cela a un sens, déterminer la transformée de Fourier de la distribution associée à la fonction $x \in \mathbb{R} \mapsto |x|^{1}$.

Exercice 6. Si cela a un sens, déterminer la transformée de Fourier de la distribution associée à la fonction $x \mapsto \sin(x)$.

Exercice 7. Pour tout $\varphi \in \mathcal{D}(\mathbb{R})$, on pose $\tilde{\varphi}(x) = \varphi(-x)$ $(x \in \mathbb{R})$. On dit que $u \in \mathcal{D}'(\mathbb{R})$ est paire (resp. impaire) si $u(\tilde{\varphi}) = u(\varphi)$ (resp. $u(\tilde{\varphi}) = -u(\varphi)$) pour tout $\varphi \in \mathcal{D}(\mathbb{R})$. Montrer que si u est une distribution tempérée paire (resp. impaire), alors il est en de même pour sa transformée de Fourier.

Exercice 8. Soit $(a_k)_{k\in\mathbb{N}}$ une suite de complexes. On définit

$$u: \varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{k \in \mathbb{N}} a_k \varphi(k).$$

- (8.1) Montrer que u définit une distribution sur \mathbb{R} .
- (8.2) Montrer que u est une distribution tempérée si et seulement s'il existe $p \in \mathbb{N}$ et $C \geq 0$ tels que $|a_k| \leq C (1+k)^p$ pour tout $k \in \mathbb{N}$.

Exercice 9.

- 1. Si une suite de fonctions de $\mathcal{D}(\mathbb{R})$ converge dans $\mathcal{D}(\mathbb{R})$, converge-t-elle dans $\mathcal{S}(\mathbb{R})$?
- 2. Si une suite de fonctions de $\mathcal{D}(\mathbb{R})$ converge dans $\mathcal{S}(\mathbb{R})$, converge-t-elle dans $\mathcal{D}(\mathbb{R})$?
- 1. Suggestion : utiliser l'Exercice 4 et le résultat $\mathcal{F}^{\pm}vp\left(\frac{1}{x}\right)=u_{\pm i\pi\,\mathrm{sign}}.$