Test de rentrée - 26 février 2013

Question 1. Examiner l'intégrabilité sur $]0, +\infty[$ de

$$x \mapsto \frac{\ln x^{\alpha}}{1 + x^{\alpha}}$$

pour toutes les valeurs du réel non nul α .

Question 2. Soient les fonctions f et g définies par

$$f(x) = \begin{cases} e^{-x} & \text{si } x \ge 0 \\ 0 & \text{si } x < 0 \end{cases} \quad \text{et} \quad g(x) = \frac{1}{1+ix} \ (x \in \mathbb{R}).$$

- (2.1) A quels espaces $L^1(\mathbb{R}), L^2(\mathbb{R}), L^\infty(\mathbb{R})$ appartiennent les fonctions f et g? Quelles sont leurs normes dans ces espaces?
- (2.2) Si possible, déterminer la transformée de Fourier (-) de f et la transformée de Fourier (+) de g.

Question 3. Soient les fonctions f et g définies sur \mathbb{R} par

$$f(x) = x$$
 et $g(x) = e^{-x} \chi_{]0,+\infty[}(x)$.

Montrer que le produit de convolution f * g est défini sur \mathbb{R} et donner sa valeur en tout point de \mathbb{R} .

Question 4.

- (4.1) Quand dit-on qu'une suite de fonctions converge ponctuellement et uniformément sur un ensemble A de \mathbb{R}^n ?
- (4.2) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions qui converge ponctuellement vers f sur un ensemble A de \mathbb{R}^n . A quelle(s) condition(s) suffisante(s) sur la suite la limite est-elle continue sur A? Ces conditions sont-elles nécessaires?
- (4.3) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions qui converge ponctuellement vers f sur un ouvert Ω de \mathbb{R}^n . A quelle(s) condition(s) suffisante(s) sur la suite la limite est-elle continûment dérivable sur Ω ? Ces conditions sont-elles nécessaires?

Question 5 (Critère d'annulation pp). Soient Ω un ouvert non-vide de \mathbb{R}^n et $f \in L^1_{loc}(\Omega)$. Démontrer que f = 0 presque partout dans Ω si et seulement si

$$\int_{\Omega} f(x)\varphi(x)dx = 0 \text{ pour tout } \varphi \in \mathcal{D}(\Omega)^{1}.$$

^{1.} c'est-à-dire si et seulement si $u_f = 0$ dans $\mathcal{D}'(\Omega)$.