Analyse II

Liste "type" 6

Mardi 10 novembre 2009

REMARQUES pour les séances de répétition

- A la répétition: exercices *

FONCTIONS D'UNE VARIABLE COMPLEXE, 2eme partie, suite

On désigne par $\mathcal{O}(\Omega)$ l'ensemble des fonctions holomorphes dans un ouvert Ω de \mathbb{C} .

1. - Déterminer le disque de convergence des séries suivantes

a)
$$(*)$$
 $\sum_{m=1}^{+\infty} m! \ z^m;$ b) $\sum_{m=1}^{+\infty} \frac{z^m}{m!};$ c) $\sum_{m=1}^{+\infty} \frac{(z-i)^{2m}}{m^3}$

d)
$$\sum_{m=1}^{+\infty} \frac{(z-1)^m}{2^m (m!)^2}$$
; e) $\sum_{m=1}^{+\infty} 4^m (z-2)^m$; f) $(*) \sum_{m=1}^{+\infty} (-1)^m (iz-1)^m$

- Voir aussi EK p 677
- 2. (*) Développer les fonctions suivantes¹ en série de puissances au point z_0 et préciser l'ensemble dans lequel le développement a lieu.

a)
$$\frac{1}{z^2+1}$$
, $z_0=0$; b) $\frac{1}{z}$, $z_0=1$; c) $\frac{z}{z^2-1}$, $z_0=0$; d) $\frac{z}{(z-1)(z+2)}$, $z_0=0$

$$e) \ \frac{1}{1+z+z^2}, \ z_0=0; \quad f) \ \frac{\sin z}{z}, \ z_0=0; \quad g) \ \frac{1-\cos z}{z^2}, \ z_0=0; \quad h) \ \frac{e^z}{1-z}, \ z_0=0.$$

3. En procédant par coefficients indéterminés, montrer que

$$\left(\frac{z}{\sin z}\right)^2 = 1 + \frac{z^2}{3} + \frac{z^4}{15} + \dots \qquad |z| < \pi$$

Même question pour

$$e^{z/\cos z} = 1 + z + \frac{z^2}{2} + \frac{2z^3}{3} + \dots \qquad |z| < \frac{\pi}{2}.$$

4. (*) On donne S et F par

$$S(z) = \sum_{m=1}^{+\infty} m^2 z^m, \quad F(z) = \frac{z + z^2}{(1 - z)^3}.$$

Où ces fonctions sont-elles holomorphes (resp. égales)? En déduire la valeur de la somme $\sum_{m=1}^{+\infty} \frac{m^2}{2^m}$.

5. Déterminer le disque de convergence et la somme des séries suivantes

$$S_1(z) = \sum_{m=1}^{+\infty} \frac{z^m}{m}, \quad S_2(z) = \sum_{m=1}^{+\infty} \frac{z^m}{m(m+1)}.$$

6. Soit f holomorphe dans \mathbb{C} . Montrer que si $\Re f$ (resp. $\Im f$) est borné, alors f est constant.

¹Le résultat suivant sera démontré dans la suite : Si f est holomorphe dans $\omega \setminus \{z_0\}$ (ω =voisinage de z_0) et si $\lim_{z\to z_0} f(z) \in \mathbb{C}$ alors f se prolonge en une fonction holomorphe dans ω

7. Si f est holomorphe dans Ω et si z_0 est un zéro d'ordre p pour f, montrer que

$$|f(z)| \le \frac{|z - z_0|^p}{r^p} \sup_{\{u : |u - z_0| = r\}} |f(u)|$$

si
$$|z - z_0| < r$$
 et $0 < r < dist(z_0, \mathbb{C} \setminus \Omega)$.

8. (*) On suppose f et g holomorphes dans l'ouvert connexe Ω . Montrer que si le produit de f et g est nul en tout point de Ω alors f est nul en tout point de Ω ou g est nul en tout point de Ω .

ANALYSE II Liste "type" 6 Solutions

Les solutions sont disponibles en format pdf (par exemple sur le site web www.afo.ulg.ac.be) (solutions à la liste 6 de 2006-2007).