

1, 2, 3...Sciences

Année académique 2010-2011

Exercices de mathématique, second quadrimestre Liste type numéro 3 : solutions

Exercices

1. Dans chacun des cas suivants, déterminer l'approximation polynomiale à l'ordre n en x_0 pour la fonction f_k . Représenter f_2 (—-ou f_3 ou f_5 —) et ses approximations.

$$f_1(x) = \sin x \ e^{2x}, \ x_0 = 0, n = 0, 1, 2, 3$$

$$f_2(x) = \sqrt{1 + 4x}, \ x_0 = 0, n = 0, 1, 2$$

$$f_3(x) = \frac{1}{1 - x}, \ x_0 = 0, n = 0, 1, 2$$

$$f_4(x) = \operatorname{arcotg} x, \ x_0 = 0, n = 0, 1, 2$$

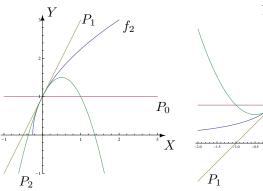
$$f_5(x) = \sin^2 x, \ x_0 = 0, \ n = 0, 1, 2$$

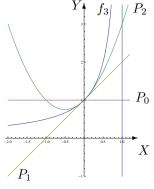
$$f_6(x) = \cos x, \ x_0 = 1, n = 0, 1, 2$$

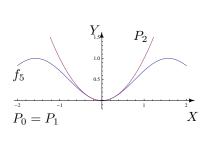
Fonction	Ordre 0	Ordre 1	Ordre 2
f_1	0	x	$x + 2x^2, \ x \in \mathbb{R}$
f_2	1	1+2x	$1 + 2x - 2x^2, \ x \in \left] -\frac{1}{4}, +\infty \right[$
f_3	1	1+x	$1 + x + x^2, \ x \in \mathbb{R} \setminus \{1\}$
f_4	$\frac{\pi}{2}$	$\frac{\pi}{2} - x$	$\frac{\pi}{2} - x, \ x \in \mathbb{R}$
f_5	0	0	$x^2, x \in \mathbb{R}$
f_6	$\cos(1)$	$\cos(1) - \sin(1)(x-1)$	$\cos(1) - \sin(1)(x-1) - \cos(1)\frac{(x-1)^2}{2}, \ x \in \mathbb{R}$

L'approximation à l'ordre 3 en 0 de f_1 est donnée par $P(x) = x + 2x^2 + \frac{11x^3}{6}, x \in \mathbb{R}$.

Dans les graphiques suivants, notons P_i l'approximation polynomiale à l'ordre i.



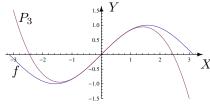




2. a) Déterminer l'approximation polynomiale à l'ordre 3 en 0 de la fonction sin et en estimer le reste. Représenter la fonction et cette approximation dans le même repère orthonormé.

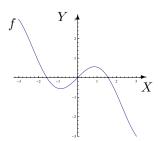
L'approximation polynomiale à l'ordre 3 en 0 est $P_3(x) = x - \frac{x^3}{6}$, $x \in \mathbb{R}$ et le reste vaut $\sin(u)$

 $R_3(x) = \frac{\sin(u)}{4!} x^4$, $x \in \mathbb{R}$ avec u strictement comprisentre 0 et x. Dès lors, on a $|R_3(x)| \le \frac{x^4}{24}$.



b) (*) Déterminer l'approximation polynomiale en 0 à l'ordre 1, 2 et 3 de la fonction $f(x) = x \cos x, \ x \in \mathbb{R}$. Représenter graphiquement ces approximations dans le même repère orthonormé que celui où f est représenté (cf ci-dessous), en justifiant les positions relatives des courbes.

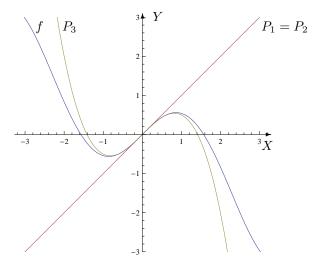
(Suggestion: $\cos x \ge 1 - \frac{x^2}{2} \ \forall x \in \mathbb{R}$.)



Les approximations polynomiales en 0 à l'ordre 1, 2 et 3 de la fonction f sont respectivement $P_1(x) = P_2(x) = x$ et $P_3(x) = x - \frac{x^3}{2}$, $x \in \mathbb{R}$.

 $P_1(x) = P_2(x) = x$ et $P_3(x) = x - \frac{x^3}{2}$, $x \in \mathbb{R}$. Au voisinage de zéro, le graphique de f est

- 1) au-dessus de celui de $P_1 = P_2$ à gauche de 0 et en dessous à droite de 0
- 2) en dessous de celui de P_3 à gauche de 0 et au-dessus de celui de P_3 à droite de 0.



3. (**) Déterminer l'approximation polynomiale à l'ordre 0,1,2,3 en 0 des fonctions données par 1

$$g_1(x) = \ln\left(\frac{1-x}{x+1}\right), \quad g_2(x) = \frac{-x+2}{2x^2+x-1}.$$

Pour g_1 , les approximations polynomiales à l'ordre 0, 1, 2, 3 en 0 sont respectivement

$$P_0(x) = 0, \ P_1(x) = -2x, \ P_2(x) = -2x, \ P_3(x) = -2x - \frac{2x^3}{3}, \ x \in]-1,1[.$$

Pour g_2 , les approximations polynomiales à l'ordre 0, 1, 2, 3 en 0 sont respectivement

$$P_0(x) = -2, \ P_1(x) = -2 - x, \ P_2(x) = -2 - x - 5x^2, \ P_3(x) = -2 - x - 5x^2 - 7x^3, \ x \in \mathbb{R} \setminus \left\{-1, \frac{1}{2}\right\}.$$

4. (**) Un tunnel d'une longueur l relie deux points de la surface de la Terre. Si R désigne le rayon de la Terre, déterminer une approximation de la profondeur maximale de ce tunnel.

L'approximation de la profondeur maximale de ce tunnel vaut $\frac{l^2}{8R}$.

^{1.} Suggestion. Utiliser le développement de $\ln(1+x)$ et $\ln(1-x)$; décomposer en fractions simples