

## 1, 2, 3...Sciences

Année académique 2011-2012

Exercices de mathématiques Liste type numéro 4 Répétition 4 : correction

Version 30 novembre 2011(V1:29/08/09)

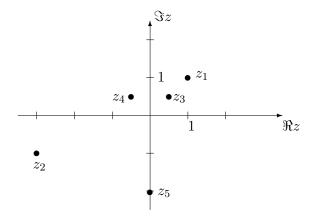
## I. Exercices de base sur les nombres complexes

1. Déterminer les partie réelle, imaginaire, le conjugué et le module de chacun des complexes ci-dessous. Représenter ces complexes dans le plan muni d'un repère orthonormé (« X= axe réel » et « Y= axe imaginaire »)

$$i+1$$
,  $(-i+1)(-1-2i)$ ,  $\frac{1}{-i+1}$ ,  $\frac{i^7}{i-1}$ ,  $(1-i)^2$ 

On a

| z                       | $\Re z$        | $\Im z$       | $\overline{z}$   | z                    |
|-------------------------|----------------|---------------|------------------|----------------------|
| $z_1 = i + 1$           | 1              | 1             | 1-i              | $\sqrt{2}$           |
| $z_2 = (-i+1)(-1-2i)$   | -3             | -1            | -3+i             | $\sqrt{10}$          |
| $z_3 = \frac{1}{-i+1}$  | $\frac{1}{2}$  | $\frac{1}{2}$ | $\frac{1-i}{2}$  | $\frac{\sqrt{2}}{2}$ |
| $z_4 = \frac{i^7}{i-1}$ | $-\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{-1-i}{2}$ | $\frac{\sqrt{2}}{2}$ |
| $z_5 = (1-i)^2$         | 0              | -2            | 2i               | 2                    |



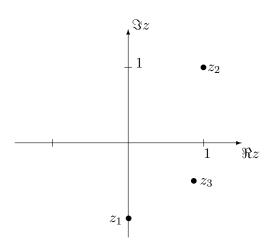
2. Déterminer la forme trigonométrique des complexes suivants et les représenter dans le plan muni d'un repère orthonormé (« X =axe réel » et « Y =axe imaginaire »)

$$-i$$
,  $i+1$ ,  $\frac{1}{2}(\sqrt{3}-i)$ .

On a

$$z_1 = -i = \cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right), \quad z_2 = i + 1 = \sqrt{2}\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$$
$$z_3 = \frac{1}{2}(\sqrt{3} - i) = \cos\left(\frac{11\pi}{6}\right) + i\sin\left(\frac{11\pi}{6}\right).$$

2



3. On suppose que  $\alpha$  est un nombre réel. Déterminer les partie réelle, imaginaire, le conjugué et le module de chacun des complexes ci-dessous. Représenter ces complexes dans le plan muni d'un repère orthonormé (« X= axe réel » et « Y= axe imaginaire ») en supposant que  $\alpha$  appartient à l'intervalle  $\left[\frac{\pi}{2},\pi\right[$ 

$$\cos \alpha - i \sin \alpha$$
,  $\frac{1}{\cos \alpha - i \sin \alpha}$ ,  $(\cos 1 + i \sin 1)(\cos \alpha - i \sin \alpha)$ ,  $\sin(2\alpha) - i \cos(2\alpha)$ .

On a

| z                                                        | $\Re z$          | $\Im z$          | $\overline{z}$                     |   |
|----------------------------------------------------------|------------------|------------------|------------------------------------|---|
| $z_1 = \cos \alpha - i \sin \alpha$                      | $\cos \alpha$    | $-\sin \alpha$   | $\cos \alpha + i \sin \alpha$      | 1 |
| $z_2 = \frac{1}{\cos \alpha - i \sin \alpha}$            | $\cos \alpha$    | $\sin \alpha$    | $\cos \alpha - i \sin \alpha$      | 1 |
| $z_3 = (\cos 1 + i \sin 1)(\cos \alpha - i \sin \alpha)$ | $\cos(1-\alpha)$ | $\sin(1-\alpha)$ | $\cos(1-\alpha) - i\sin(1-\alpha)$ | 1 |
| $z_4 = \sin(2\alpha) - i\cos(2\alpha)$                   | $\sin(2\alpha)$  | $-\cos(2\alpha)$ | $\sin(2\alpha) + i\cos(2\alpha)$   | 1 |



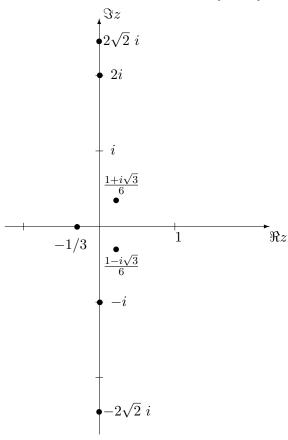
4. Résoudre les équations suivantes et représenter les solutions dans le plan muni d'un repère orthonormé (« X= axe réel » et « Y= axe imaginaire »)

$$z^2 + 8 = 0$$
,  $27z^3 + 1 = 0$ ,  $z^2 + 2 = iz$ 

L'ensemble des solutions de la première équation est  $S = \{-2\sqrt{2} \ i, 2\sqrt{2} \ i\}$ . L'ensemble des solutions de la deuxième équation est

$$S = \left\{ -\frac{1}{3}, \frac{1}{6} \left( 1 + i\sqrt{3} \right), \frac{1}{6} \left( 1 - i\sqrt{3} \right) \right\}$$

L'ensemble des solutions de la troisième équation est  $S = \{-i, 2i\}$ .



## II. Divers

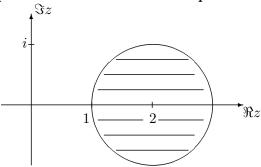
1. Reprendre l'exercice IV.4 de la liste 2 et l'interpréter en utilisant les nombres complexes.

Le point  $P_1$  de coordonnées cartésiennes  $(r\cos(\theta), r\sin(\theta))$  avec r > 0 et  $\theta \in ]\frac{\pi}{4}, \frac{\pi}{2}]$  est le point-image du complexe  $z_1 = r(\cos(\theta) + i\sin(\theta))$ .

Le point  $P_2$  de coordonnées cartésiennes  $\left(r\cos(\theta+\frac{\pi}{6}),r\sin(\theta+\frac{\pi}{6})\right)$  est le point-image du complexe  $z_2=r(\cos(\theta+\frac{\pi}{6})+i\sin(\theta+\frac{\pi}{6}))$ .

Si on multiplie  $z_1$  par  $z = \cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})$ , on obtient  $z_2$ . Ainsi, la rotation de 30° dans le sens trigonométrique correspond à une multiplication du complexe  $z_1$  par le complexe z.

2. Représenter graphiquement l'ensemble des complexes z qui vérifient  $|z-2| \le 1$ .



Les points du cercle (le « bord ») sont compris dans l'ensemble.

3. On donne l'ensemble A suivant du plan. Décrire cet ensemble à l'aide des coordonnées polaires.

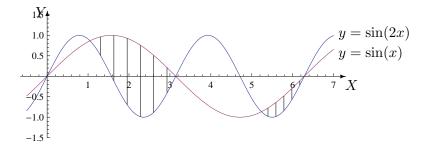
$$A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, x \ge 0, y \le 0\} = \{z \in \mathbb{C} : |z| \le 3, \Re z \ge 0, \Im z \le 0\}.$$

On a

$$A = \left\{ (r, \theta) : r \in ]0, 3], \ \theta \in \left\lceil \frac{3\pi}{2}, 2\pi \right\rceil \right\}.$$

4. On donne l'ensemble B suivant. Représenter graphiquement celui-ci en le hachurant.

$$B = \{(x, y) \in \mathbb{R}^2 : x \in [0, 2\pi], \sin(2x) \le y \le \sin x\}.$$



Les points des « bords » sont compris dans l'ensemble.