

1, 2, 3...Sciences

Année académique 2012-2013

Exercices de mathématiques Répétition 7 : correction

I. Exercices sur les limites des valeurs des fonctions

Calculer (si possible) les limites suivantes, sans appliquer le théorème de l'Hospital

(1)
$$\lim_{x \to 2^{-}} \frac{x^2 - 4}{|2 - x|}$$

(1)
$$\lim_{x \to 2^{-}} \frac{x^2 - 4}{|2 - x|}$$
 (2) $\lim_{x \to -\infty} \frac{\sqrt{1 - x}}{\sqrt{1 - x^2}}$ (3) $\lim_{x \to \frac{\pi}{2}} \frac{\cot g x}{\sin(2x)}$

(3)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\sin(2x)}$$

(4)
$$\lim_{x \to +\infty} \ln(|-2x - \pi|)$$

(4)
$$\lim_{x \to +\infty} \ln(|-2x - \pi|)$$
 (5) $\lim_{x \to +\infty} (\ln(4x - 1) - \ln(4x))$ (6) $\lim_{x \to -\infty} \frac{-3x^2 + 4x}{2x^2 + 1}$

(6)
$$\lim_{x \to -\infty} \frac{-3x^2 + 4x}{2x^2 + 1}$$

Toutes ces limites, sauf la deuxième, peuvent être envisagées et on a

(1)
$$\lim_{x \to 2^{-}} \frac{x^2 - 4}{|2 - x|} = (-4)^{+}$$

(3)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\sin(2x)} = \left(\frac{1}{2}\right)^+$$

(1)
$$\lim_{x \to 2^{-}} \frac{x^{2} - 4}{|2 - x|} = (-4)^{+}$$
 (3)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\sin(2x)} = \left(\frac{1}{2}\right)^{+}$$
 (4)
$$\lim_{x \to +\infty} \ln(|-2x - \pi|) = +\infty$$

(5)
$$\lim_{x \to +\infty} (\ln(4x - 1) - \ln(4x)) = 0^-$$

(6)
$$\lim_{x \to -\infty} \frac{-3x^2 + 4x}{2x^2 + 1} = \left(-\frac{3}{2}\right)^{-1}$$

II. Continuité et dérivation

1. En appliquant la définition, montrer que $f: x \mapsto 4x^2 - x$ est dérivable en -1 et donner la valeur de sa dérivée en ce point.

Calculons $\lim_{h\to 0} \frac{f(-1+h)-f(-1)}{h} = \lim_{h\to 0} (4h-9) = -9$. Comme cette limite existe et est finie, la fonction est dérivable en -1. La limite valant -9, la dérivée de cette fonction en -1 vaut -9.

2. a) On donne des fonctions par les expressions explicites suivantes. En déterminer le domaine de définition, de continuité, de dérivabilité et en calculer la dérivée première.

$$\sqrt[5]{4x^2 - 1}$$
 $\frac{1}{\sqrt{1 + 2x}}$ $\frac{1}{3x^2 - 6x + 3}$ $\operatorname{arcotg}(\sin x)$ $(*)$ $\sqrt{\cos(2x)}$ $\cos(\operatorname{tg}(x))$

$$\operatorname{arcotg}(\sin x)$$

$$(*) \sqrt{\cos(2x)} \qquad \cos(\operatorname{tg}(x))$$

$$e^{\arcsin(x)}$$

$$\cos^2(3x)$$

$$e^{\arcsin(x)}$$
 $\cos^2(3x)$ $\ln(x^6)$ $\ln(x^2 - x - 2)$ $(\ln(3))^x$

$$(\ln(3))^x$$
 x

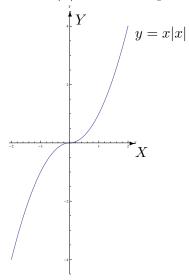
Si on note A le domaine de définition des fonctions, B leur domaine de continuité et C leur domaine de dérivabilité, on a les résultats suivants

f	A = B	C	Dérivée
$\sqrt[5]{4x^2-1}$	\mathbb{R}	$\mathbb{R}\setminus\{-\frac{1}{2},\frac{1}{2}\}$	$\frac{8x}{5\sqrt[5]{(4x^2-1)^4}}$
$\frac{1}{\sqrt{1+2x}}$	$]-\frac{1}{2},+\infty[$	$]-\frac{1}{2},+\infty[$	$\frac{-1}{\sqrt{(1+2x)^3}}$
$\frac{1}{3x^2 - 6x + 3}$	$\mathbb{R}\setminus\{1\}$	$\mathbb{R}\setminus\{1\}$	$\frac{-2}{3(x-1)^3}$
$arcotg(\sin x)$	\mathbb{R}	\mathbb{R}	$\frac{-\cos(x)}{1+\sin^2(x)}$

2

$\int f$	A = B	C	Dérivée
$\sqrt{\cos 2x}$	$\bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{4} + k\pi, \frac{\pi}{4} + k\pi \right]$	$\bigcup_{k \in \mathbb{Z}} \left] -\frac{\pi}{4} + k\pi, \frac{\pi}{4} + k\pi \right[$	$\frac{-\sin(2x)}{\sqrt{\cos(2x)}}$
$\cos(\operatorname{tg}(x))$	$\mathbb{R}\setminus \{\tfrac{\pi}{2}+k\pi: k\in \mathbb{Z}\}$	$\mathbb{R}\setminus\{\tfrac{\pi}{2}+k\pi:k\in\mathbb{Z}\}$	$\frac{-\sin(\operatorname{tg}(x))}{\cos^2(x)}$
$e^{\arcsin(x)}$	[-1,1]]-1,1[$\frac{e^{\arcsin(x)}}{\sqrt{1-x^2}}$
$\cos^2(3x)$	\mathbb{R}	\mathbb{R}	$-3\sin(6x)$
$\ln(x^6)$	\mathbb{R}_0	\mathbb{R}_0	$\frac{6}{x}$
$\ln(x^2 - x - 2)$	$]-\infty,-1[\ \cup\]2,+\infty[$	$]-\infty,-1[\ \cup\]2,+\infty[$	$\frac{2x-1}{x^2-x-2}$
$(\ln(3))^x$	\mathbb{R}	\mathbb{R}	$\ln(\ln(3)) (\ln(3))^x$
x x	\mathbb{R}	\mathbb{R}	2 x

b) Représenter la fonction $x \mapsto x|x|$ dans un repère orthonormé.



- 3. On donne la fonction g dérivable sur]-1,1[et la fonction $f:t\mapsto f(t)=g(\ln(t))$.
 - a) Déterminer le domaine de dérivabilité de f.
 - b) Calculer la dérivée de f en fonction de la dérivée de g.
 - c) Mêmes questions si g est dérivable sur [0,3] et si f est la fonction $y \mapsto f(y) =$ $g(\sqrt{y^2-1})$.
 - a) Le domaine de dérivabilité de f est l'ensemble $\left[\frac{1}{e}, e\right[$.

 - b) La dérivée de f est donnée par $Df(t)=D_yg(y)|_{y=\ln(t)}$. $\frac{1}{t}$. c) Le domaine de dérivabilité de f est l'ensemble $]-\sqrt{10},-1[\ \cup\]1,\sqrt{10}[$ et la dérivée de f est donnée par $Df(y)=D_tg(t)|_{t=\sqrt{y^2-1}}$.

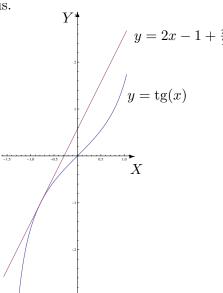
4. Soit $F: t \mapsto F(t) = f(x(t))$ avec x(3) = 2, Dx(3) = 5 et $(D_x f)(2) = -4$. En supposant F dérivable en 3, que vaut (DF)(3)?

La dérivée de F en 3 vaut -20.

III. Divers

1. Déterminer l'équation cartésienne de la tangente au graphique de la fonction $x \mapsto \operatorname{tg}(x)$ au point d'abscisse $-\frac{\pi}{4}$. Représenter cette fonction et cette tangente.

L'équation cartésienne de la tangente au graphique de la fonction $x\mapsto \operatorname{tg}(x)$ au point d'abscisse $-\frac{\pi}{4}$ est $2x-y-1+\frac{\pi}{2}=0$; le graphique de cette fonction et de cette tangente se trouve ci-dessous.



2. Représenter graphiquement les fonctions f_1 et f_2 suivantes

$$f_1(x) = \frac{-x + x^2 - 2}{2 + x}, \quad f_2(x) = xe^{-2x}.$$

Une étude graphique permet de représenter graphiquement les fonctions f_1 et f_2 . Voici leurs graphiques.

