

1, 2, 3...Sciences

Année académique 2014-2015

Evaluation du 06 octobre 2014

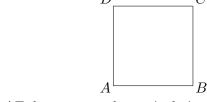
CHIMIE & MATHEMATIQUE

Corrigé de la version

 \bullet 0 0 \bullet

CONSIGNES

- Bien lire les consignes qui se trouvent sur le formulaire de réponse
- Pour chaque question, un seul item proposé est correct
- Réponse correcte : +1 ; réponse incorrecte : -0,25 ; pas de réponse : 0


La calculatrice n'est pas permise. Le Journal de Bord est permis et sera fourni <u>sur demande</u>. Question 1 Si a est un réel strictement positif, alors la valeur absolue de $-2a+a^2$ vaut toujours

- 1) $2a a^2$
- **2)** $a^2 2a$
- 3) $2a + a^2$
- 4) $-2a a^2$
- A aucune des réponses précédentes n'est correcte

Question 2 Pour qu'un nombre réel soit inférieur ou égal à son carré

- 1) il est nécessaire qu'il soit négatif
- 2) il est nécessaire qu'il soit positif
- 3) il est suffisant qu'il soit positif
- 4) aucun réel ne vérifie cette inégalité
- ♣ aucune des réponses précédentes n'est correcte

Question 3 On considère un carré ABCD dont la mesure d'un côté est égale 1 (unité utilisée). Soit M le milieu du côté AB. On trace la circonférence de centre M et de rayon égal à la longueur du segment joignant M à C. Celle-ci coupe la droite déterminée par A et B en un point E (à droite de B). On obtient ainsi un rectangle AEFD, appelé « rectangle d'or ».

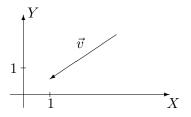
La longueur du côté AE de ce rectangle est égale à

- 1) $\frac{3}{2}$
- **2**) 2
- 3) $\frac{1+\sqrt{2}}{2}$
- $\frac{1+\sqrt{5}}{2}$
- 5) aucune des réponses précédentes n'est correcte

Question 4 Le cosinus du réel 3

- 1) n'existe pas
- 2) est égal à $\frac{1}{2}\cos 6$
- 3) est égal à $\sin 3 |\cot 3|$
- \clubsuit est un nombre négatif plus grand que -1
- 5) aucune des réponses précédentes n'est correcte

Question 5 Que vaut $\sin\left(\frac{17\pi}{6}\right)$?


- ♣ ¹
- 2) $-\frac{1}{2}$
- 3) $\frac{\sqrt{3}}{2}$
- 4) $-\frac{\sqrt{3}}{2}$
- 5) aucune des réponses précédentes n'est correcte

Question 6 On travaille dans une base orthonormée de l'espace et on considère deux vecteurs \vec{u}, \vec{v} . Si on double la première composante de chacun des deux vecteurs, alors

- 1) on double le produit scalaire de \vec{u} et \vec{v}
- 2) on double la longueur du produit vectoriel de \vec{u} et \vec{v}
- 3) on double la première composante du produit vectoriel de \vec{u} et \vec{v}
- \clubsuit on double la deuxième composante du produit vectoriel de \vec{u} et \vec{v}
- 5) aucune des réponses précédentes n'est correcte

Question 7

Dans un repère orthonormé du plan, on donne le vecteur libre \vec{v} par la représentation ci-contre. On suppose que la mesure de l'angle entre ce vecteur et le vecteur de base de l'axe X est $\theta \in [0, \pi]$ et que la longueur du vecteur (c'est-à-dire sa norme) est égale à 3. Dans ce cas, en utilisant les données et les notations de l'énoncé, que vaut la deuxième composante du vecteur \vec{v} ?

- 1) $3\sin(\theta)$
- 2) $3\cos(\theta)$
- $-3\sin(\theta)$
- **4)** $-3\cos(\theta)$
- 5) aucune des réponses précédentes n'est correcte

Question 8 Eric utilise de l'électricité qui lui est fournie avec les tarifs suivants :

- $\overline{-1~K}Wh$ d'électricité consommé en période pleine coûte 20 centimes d'euro
- 1 KWh d'électricité consommé en période creuse coûte 16 centimes d'euro.

Pour faire des économies, Eric consomme 2,5 fois plus d'électricité durant les périodes creuses que durant les périodes pleines. A la fin de l'année, il reçoit sa facture d'électricité et constate que sa consommation annuelle lui coûte 540 euros. Quelle est la consommation annuelle d'Eric en KWh?

- **1)** 900 KWh
- **2)** 1500 KWh
- **3)** 2250 KWh
- ♣ 3150 KWh
- 5) aucune des réponses précédentes n'est correcte

Question 9 Combien de gr de NH_3 peut-on espérer produire à partir de $8,50$ gr de $H_2(g)$, en supposant qu'un excès de $N_2(g)$ soit disponible?
\clubsuit 48 gr
2) 85 gr
3) 28 gr
4) 42,5 gr
5) 53 qr

- Question 10 La pression de vapeur d'une solution aqueuse de glucose à $20^{\circ}C$ est égale à $20 \, mmHg$. Celle de l'eau pure à la même température est égale à $20, 2 \, mmHg$. La molalité de cette solution est
 - **1)** 0,01 m
 - **2)** 5,60 m
 - $\clubsuit 0,56 m$
 - **4)** 0,10 m
 - **5)** 0,99 m
- Question 11 A $27^{\circ}C$, une solution de benzène qui contient 5gr d'un polymère organique dans un volume final de 300ml a une pression osmotique de 0,0082 atm. La masse molaire du polymère est
 - 1) $5000 \ gr/mole$
 - ♣ 50000 *gr/mole*
 - **3)** $500000 \ gr/mole$
 - **4)** 10000 gr/mole
 - **5)** $100000 \ gr/mole$
- Question 12 Si un gaz occupe un volume de 250 ml à 27°C, le volume qu'il occupera à 127°C est (on suppose que la pression reste constante)
 - ♣ 333 ml
 - **2)** 350 ml
 - **3)** 250 ml
 - **4)** 167, 5 ml
 - **5)** 750 ml
- **Question 13** Si les deux gaz sont à la même température, la vitesse d'effusion de O_2 est
 - \clubsuit 0,35 fois celle de He
 - 2) 8 fois celle de He
 - 3) 4 fois celle de He
 - 4) 2,88 fois celle de He
 - **5)** 0,125 fois celle de He

 $\frac{\textbf{Question 14}}{\text{mol\'eculaire est}} \text{ La d\'ependance de la vitesse quadratique moyenne d'un gaz vis-\`a-vis de sa masse}$

- **1)** *M*
- 2) \sqrt{M}
- $1/\sqrt{M}$
- **4)** M^2
- 5) $1/M^2$

Question 15 La plus grosse pépite d'or trouvée en France a une masse $m = 543 \ gr$. Sachant que l'on néglige la masse des électrons et que la masse d'un proton (et d'un neutron) est égale à 1,67 $10^{-27} \ kgr$, le nombre d'atomes d'or N que contient cette pépite est

- 4.00 10^{24}
- **2)** 0,66 10²⁴
- **3)** $1,66 \ 10^{21}$
- **4)** 0,66 10²¹
- 5) aucune des réponses précédentes n'est correcte

Question 16 On donne une solution de saccharose $(C_{12}H_{22}O_{11})$ à 1,74 m dont la masse volumique est égale à 1,12 gr/mL. Sa molarité est

- ♣ 1,22 M
- **2)** 1,95 *M*
- **3)** 3,25 *M*
- **4)** 0,61 M
- 5) aucune des réponses précédentes n'est correcte