

1, 2, 3... Sciences

 $Ann\'ee\ acad\'emique\ 2015-2016$

 $Math\'{e}matique: corrig\'{e} \ du \ test \ 1$

Corrigé du test 1 du 05-10-2015

1. Citer deux formules qui permettent de transformer le cosinus d'un réel en un sinus.

Solution. - La formule fondamentale nous permet d'écrire $\cos(x) = \pm \sqrt{1 - \sin^2(x)}, x \in \mathbb{R}$, signe à déterminer en fonction du quadrant.

On a donc
$$\cos(x) = \sqrt{1 - \sin^2(x)}, x \in \bigcup_{n=0}^{\infty} \left[-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right]$$

On a donc
$$\cos(x) = \sqrt{1 - \sin^2(x)}, x \in \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right]$$

et $\cos(x) = -\sqrt{1 - \sin^2(x)}, x \in \bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi \right]$.

- Les "angles associés" (angles complémentaires) vérifient la relation $\cos(x) = \sin(\frac{\pi}{2} x), x \in \mathbb{R}$.
- Une troisième formule est encore possible $\cos(x) = 1 2\sin^2(\frac{x}{2}), x \in \mathbb{R}$.
- 2. Une table ronde a un diamètre de 1,20 mètre. Elle peut se séparer en deux demi-cercles pour permettre d'insérer deux rallonges rectangulaires de 5 décimètres de large chacune. Sachant que chaque convive doit disposer d'au moins 60 centimètres de "bord de table", combien peut-on en installer au maximum autour de la table? Si nécessaire, on prendra 3 comme valeur approchée de π .

Solution. Le rayon de la table vaut 1.20: 2=0.6 m=60 cm et la largeur de chaque rallonge vaut 5 dm = 50 cm. En ajoutant les 2 rallonges, le périmètre de celle-ci est alors de

 $2.\pi.60 + 4.50 = 120.\pi + 200 \approx 560 \ cm$, puisque $\pi \approx 3$.

Comme $560:60\approx 9$, on peut donc installer au maximum 9 convives autour de la table.

Corrigé du test 1 du 07-10-2015

1. Résoudre l'inéquation suivante $|x-x^2| < 1$ (x est l'inconnue réelle).

Solution. Puisque si r est un réel postif et x un réel, on a $|x| < r \Leftrightarrow -r < x < r$, l'inéquation s'écrit $-1 < x - x^2 < 1 \Leftrightarrow x^2 - x - 1 < 0$ et $-x^2 + x - 1 < 0$

La première inéquation, de discriminant $\Delta = 1 - 4$.(-1) = 5, possède comme ensemble de solutions $S_1 =]\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}[$ et la seconde, de discriminant $\Delta = 1 - 4.(-1)(-1) = -3$, négatif, est toujours vérifiée puisque le coefficient du terme en x^2 est négatif. Son ensemble de solutions est donc $S_2 = \mathbb{R}$ L'ensemble des solutions de l'inéquation donnée est donc l'ensemble $S = S_1 \cap S_2 = \left| \frac{1 - \sqrt{5}}{2}, \frac{1 + \sqrt{5}}{2} \right|$

Une autre méthode est possible en utilisant la définition de la valeur absolue.

Si $x-x^2 \ge 0$ c'est-à-dire si $0 \le x \le 1$, alors l'inéquation s'écrit $x-x^2 < 1 \Leftrightarrow x^2-x+1 > 0$. Comme le discriminant $\Delta = 1 - 4 = -3$ est négatif et le coefficient du terme en x^2 positif, l'inéquation est toujours vérifiée et $S_1 = [0, 1]$.

Si $x-x^2 \le 0$, c'est-à-dire si $x \le 0$ ou $x \ge 1$, alors l'inéquation s'écrit $-x+x^2 < 1 \Leftrightarrow x^2-x-1 < 0$. Comme le discriminant $\Delta = 1 - 4.(-1) = 5$ est positif, cette inéquation possède comme ensemble de solutions $S_2 =]\frac{1-\sqrt{5}}{2}, 0] \cup [1, \frac{1+\sqrt{5}}{2}[$.

Par conséquent, l'ensemble des solutions de l'inéquation donnée est $S = S_1 \cup S_2 =]\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}[$.

2. Les âges de deux soeurs diffèrent de 6 ans. Dans 9 ans, à elles deux, elles auront 66 ans. Quel âge ont-elles actuellement?

2

Solution. Soit x l'âge actuel de la soeur cadette.

L'âge actuel de sa soeur ainée est alors x+6 et on a

$$x+9+(x+6)+9 = 66$$

$$\Leftrightarrow 2x+24 = 66$$

$$\Leftrightarrow 2x = 42$$

$$\Leftrightarrow x = 21$$

Dès lors, la plus jeune des deux soeurs a 21 ans et son ainée a 21+6=27 ans.