

1, 2, 3...Sciences

Année académique 2016-2017

Evaluation du 17 octobre 2016 $CHIMIE \ \ \emph{WATHEMATIQUE}$

 \bullet 0 0 \bullet

CORRIGE

Question 1 La pluie est prévue. Marianne souhaite recueillir une certaine quantité de l'eau qui va tomber du ciel pour aménager un petit aquarium naturel dans sa maison. Sachant que l'aquarium a une base en forme de triangle équilatéral dont la longueur des côtés est égale à 40 centimètres (et que les parois sont verticales), quelle quantité d'eau doit-elle recueillir pour que la hauteur de l'eau atteigne 40 cm?

- 1) entre 4 et 8 litres
- ♣ entre 16 et 30 litres
- 3) entre 64 et 100 litres
- 4) entre 1/8 et 1/4 de mètre cube
- 5) aucune des réponses précédentes n'est correcte

Question 2 Si u est un réel strictement négatif, alors la valeur absolue de $u^2 + u$ vaut toujours

- 1) $u^2 + u$
- **2)** $-u^2 u$
- 3) $u^2 u$
- **4)** $-u^2 + u$
- A aucune des réponses précédentes n'est correcte

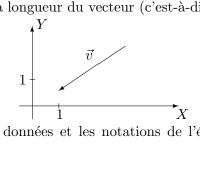
Question 3 Si a désigne un réel, alors l'inégalité $a^2 > |a|$

- 1) est équivalente à dire que la valeur du réel a est strictement supérieure à 1
- 2) est une condition suffisante pour que le réel a soit strictement supérieur à 1
- \clubsuit est une condition nécessaire au fait que le réel a soit strictement supérieur à 1
- 4) n'a pas de sens
- 5) aucune des réponses précédentes n'est correcte

Question 4 Le sinus du réel 7

- 1) n'existe pas
- 2) est un nombre négatif plus grand que -1
- 3) est un nombre positif plus grand que 1
- 4) est un nombre défini à un multiple de 2π près
- A aucune des réponses précédentes n'est correcte

Question 5 Le cosinus du carré d'un nombre réel


- 1) est égal au carré du cosinus du réel
- 2) est égal au double du cosinus du réel
- 3) est égal au double du produit du sinus et du cosinus du réel
- 4) n'existe pas
- aucune des réponses précédentes n'est corrrecte

Question 6 On travaille dans une base orthonormée de l'espace et on considère deux vecteurs \vec{u}, \vec{v} . Si on double les composantes de chacun des vecteurs, alors

- 1) on double le produit scalaire de \vec{u} et \vec{v}
- 2) on double la longueur du produit vectoriel de \vec{u} et \vec{v}
- 3) on double la première composante du produit vectoriel de \vec{u} et \vec{v}
- 4) le produit scalaire des vecteurs est élevé au carré

A aucune des réponses précédentes n'est corrrecte

Question 7 Dans un repère orthonormé du plan, on donne le vecteur libre \vec{v} par la représentation ci-dessous. On suppose que la mesure de l'angle entre ce vecteur et le vecteur de base de l'axe X est $\theta \in [0, \pi]$ et que la longueur du vecteur (c'est-à-dire sa norme) est égale à 3.

Dans ce cas, en utilisant les données et les notations de l'énoncé, que vaut la seconde composante du vecteur \vec{v} ?

- 1) $3\sin(\theta)$
- **2)** $3\cos(\theta)$
- $-3\sin(\theta)$
- 4) $-3\cos(\theta)$
- 5) aucune des réponses précédentes n'est correcte

Question 8 Dans un repère orthonormé, l'équation cartésienne $16x^2 + y^2 = 4$ est l'équation

- 1) d'une hyperbole
- 2) d'un cercle de rayon égal à 2
- 3) d'une ellipse dont les foyers se trouvent sur l'axe X
- ♣ d'une ellipse dont les foyers se trouvent sur l'axe Y
- 5) aucune des réponses précédentes n'est correcte

Question 9 Combien de g de NH_3 peut-on espérer produire à partir de $8,50$ g de $H_2(g)$, en supposant qu'un excès de $N_2(g)$ soit disponible?
♣ 48 <i>g</i>
2) 85 g
3) 28 g
4) 42,5 g
5) 53 <i>g</i>
Question 10 La pression de vapeur d'une solution aqueuse de glucose à $20^{\circ}C$ est égale à

Question 10 La pression de vapeur d'une solution aqueuse de glucose à $20^{\circ}C$ est égale à 20 mmHg. Celle de l'eau pure à la même température est égale à 20, 2 mmHg. La molalité de cette solution est

- **1)** 0,01 m
- **2)** 5,60 m
- $\clubsuit 0,56 m$
- **4)** 0,10 m
- **5)** 0,99 m

Question 11 A $27^{\circ}C$, une solution de benzène qui contient 5g d'un polymère organique dans un volume final de 300ml a une pression osmotique de 0,0082 atm. La masse molaire du polymère est

- **1)** 5000 *g/mole*
- \clubsuit 50000 g/mole
- **3)** $500000 \ g/mole$
- **4)** 10000 g/mole
- **5)** 100000 g/mole

Question 12 Si un gaz occupe un volume de 250 ml à $27^{\circ}C$, le volume qu'il occupera à $127^{\circ}C$ est (on suppose que la pression reste constante)

- ♣ 333 ml
- **2)** 350 ml
- **3)** 250 ml
- **4)** 167, 5 ml
- **5)** 750 ml

Question 13 Si les deux gaz sont à la même température, la vitesse d'effusion de O_2 est

- \clubsuit 0,35 fois celle de He
- 2) 8 fois celle de He
- 3) 4 fois celle de He
- 4) 2,88 fois celle de He
- **5)** 0,125 fois celle de He

 $\frac{\textbf{Question 14}}{\text{mol\'eculaire est}} \text{ La d\'ependance de la vitesse quadratique moyenne d'un gaz vis-\`a-vis de sa masse}$

- **1)** *M*
- 2) \sqrt{M}
- $1/\sqrt{M}$
- **4)** M^2
- 5) $1/M^2$

Question 15 La plus grosse pépite d'or trouvée en France a une masse $m = 543 \ g$. Sachant que l'on néglige la masse des électrons et que la masse d'un proton (et d'un neutron) est égale à 1,67 $10^{-27} \ kg$, le nombre d'atomes d'or N que contient cette pépite est

- 4.00 10^{24}
- **2)** 0,66 10²⁴
- **3)** 1,66 10²¹
- **4)** 0,66 10²¹
- 5) aucune des réponses précédentes n'est correcte

Question 16 On donne une solution de saccharose $(C_{12}H_{22}O_{11})$ à 1,74 m dont la masse volumique est égale à 1,12 g/ml. Sa molarité est

- ♣ 1,22 M
- **2)** 1,95 *M*
- **3)** 3,25 *M*
- **4)** 0,61 M
- 5) aucune des réponses précédentes n'est correcte