$\mathrm{TD}-\mathrm{Avril}\ 2018$

Exercice 1. Soit $\varphi \in \mathcal{D}(\mathbb{R})$. Pour tout $m \in \mathbb{N}_0$, on pose

$$\varphi_m(x) = \frac{\varphi(x+1/m) - \varphi(x)}{1/m}, \quad x \in \mathbb{R}.$$

- (a) Montrer que $\varphi_m \in \mathcal{D}(\mathbb{R})$ pour tout $m \in \mathbb{N}_0$.
- (b) La suite $(\varphi_m)_{m\in\mathbb{N}_0}$ converge-t-elle dans $\mathcal{D}(\mathbb{R})$? Si oui, en déterminer la limite.

Exercice 2. Les applications suivantes sont-elles des distributions dans \mathbb{R} ? Justifier. En cas de réponse affirmative, en déterminer le support.

(a)
$$\varphi \in \mathcal{D}(\mathbb{R}) \mapsto \int_0^{+\infty} \varphi(x) (D\varphi)(x) \ dx$$
 (d) $\varphi \in \mathcal{D}(\mathbb{R}) \mapsto \int_{\mathbb{R}} \varphi(e^x) \ dx$

(d)
$$\varphi \in \mathcal{D}(\mathbb{R}) \mapsto \int_{\mathbb{R}} \varphi(e^x) dx$$

(b)
$$\varphi \in \mathcal{D}(\mathbb{R}) \mapsto \int_0^1 (D\varphi)(x) \ dx$$

(e)
$$\varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{n=1}^{+\infty} \frac{1}{n} (\varphi(1/n) - \varphi(0))$$

(c)
$$\varphi \in \mathcal{D}(\mathbb{R}) \mapsto \sum_{n=1}^{+\infty} \varphi(x_n)$$

(f)
$$\varphi \in \mathcal{D}(\mathbb{R}_0) \mapsto \sum_{n=1}^{+\infty} n^2 \varphi(x_n)$$

où $(x_n)_{n\in\mathbb{N}_0}$ désigne une suite de réels qui converge vers 0.

Exercice 3. Pour tout $\varphi \in \mathcal{D}(\mathbb{R})$, on pose

$$u(\varphi) = -\lim_{\varepsilon \to 0^+} \left(\int_{|x| > \varepsilon} \frac{\varphi(x)}{x^2} dx - 2 \frac{\varphi(0)}{\varepsilon} \right).$$

Montrer que u définit une distribution dans \mathbb{R} et que si $f(x) = \ln(|x|)$ $(x \in \mathbb{R}_0)$ alors $u = D^2 u_f$.

Exercice 4. Soit f la fonction définie par

$$f(x) = \begin{cases} 1 - \cos(x) & \text{si } x > 0, \\ 0 & \text{si } x \le 0. \end{cases}$$

- (a) Déterminer le plus grand naturel p pour lequel cette fonction est de classe C^p dans \mathbb{R} .
- (b) Montrer qu'au sens distribution (dans R), cette fonction vérifie l'équation

$$D^{2}u + u = \chi_{]0;+\infty[}. (1)$$

(c) Déduire la solution générale dans $\mathcal{D}'(\mathbb{R})$ de l'équation (1).

Exercice 5. Déterminer les distributions u de $\mathcal{D}'(\mathbb{R})$ qui vérifient les équations suivantes :

(a)
$$xu = u$$

(c)
$$Du = u_Y$$

(e)
$$xDu = \delta_0$$

(b)
$$x^2u + u = 0$$

(d)
$$xDu = u_Y$$

(f)
$$D^2u + 4u = \delta_0$$

Exercice 6. Soient u une distribution dans \mathbb{R}^n et $\varphi \in \mathcal{D}(\mathbb{R}^n)$. Montrer que

$$\varphi u = 0 \Rightarrow u(\varphi) = 0$$

mais que la réciproque est fausse.

Exercice 7. Montrer que si $\varphi \in \mathcal{D}(\mathbb{R})$ est non nul, alors sa transformée de Fourier n'est pas à support compact.

Exercice 8. Soit u une distribution tempérée dans \mathbb{R} et soit $\alpha \in \mathbb{N}_0$.

- (a) Montrer que la distribution $D^{\alpha}u$ est également tempérée.
- (b) Montrer que

$$\mathcal{F}^{\pm}(D^{\alpha}u) = (\mp i)^{\alpha} f_{\alpha} \mathcal{F}^{\pm}u \quad \text{et} \quad D^{\alpha}(\mathcal{F}^{\pm}u) = (\pm i)^{\alpha} \mathcal{F}^{\pm}(f_{\alpha}u)$$

où
$$f_{\alpha}(x) = x^{\alpha} \ (x \in \mathbb{R}).$$

(c) La distribution $D^2\delta_0$ est-elle tempérée dans \mathbb{R} ? Si oui, en calculer la transformée de Fourier.

Exercice 9. Si cela a un sens, déterminer la transformée de Fourier de la distribution associée à la fonction $f: x \mapsto \cos(x)\sin(x)$.

Exercice 10. Pour tout $n \in \mathbb{N}_0$, soient

$$f_n(x) = \sqrt{(n/\pi)} e^{-nx^2}$$
 et $F_n(x) = \int_{-\infty}^x f_n(t) dt$, $x \in \mathbb{R}$.

Montrer que la suite de distributions associées aux fonctions f_n converge dans $\mathcal{D}'(\mathbb{R})$ vers une distribution à déterminer. Même question pour F_n .