1. Intégrales paramétriques, transformées de Fourier et produit de convolution

Exercice 1. Soient a, b > 0. Si possible, calculer l'intégrale

$$\int_0^{+\infty} \frac{\arctan(ax) - \arctan(bx)}{x} \, dx.$$

Exercice 2. Soient $a, b \in \mathbb{R}$ et p > 0. Prouver l'égalité

$$\int_0^{+\infty} \frac{\cos(ax) - \cos(bx)}{x} e^{-px} dx = \frac{1}{2} \ln \left(\frac{b^2 + p^2}{a^2 + p^2} \right).$$

Exercice 3. Si possible, calculer les transformées de Fourier des fonctions f_1 , f_2 et f_3 définies sur \mathbb{R} par $f_1(x) = xe^{-x}\chi_{[0,+\infty[}(x), \quad f_2(x) = e^{ix}e^{-|x|}$ et $f_3(x) = e^{-|x-1|}$.

Exercice 4. Soient $a, b \in]0, +\infty[$ et $c \in \mathbb{R}$.

- (1) Déterminer si possible les transformées de Fourier de la fonction f_a définie par $f_a(x) = e^{-a|x|}, x \in \mathbb{R}$.
- (2) Faire de même avec la fonction g_a définie par $g_a(x) = \frac{1}{x^2 + a^2}, x \in \mathbb{R}$.
- (3) En déduire la valeur de l'intégrale

$$\int_0^{+\infty} \frac{\cos(cx)}{x^2 + a^2} \, dx.$$

(4) En utilisant le théorème de transfert, calculer la valeur de l'intégrale

$$\int_0^{+\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}.$$

(5) Calculer si possible

$$\int_0^{+\infty} \frac{e^{-x}}{x} \sin(x) \, dx.$$

Exercice 5. (1) Si possible, déterminer les transformées de Fourier des fonctions f_1 et g_1 (d'une variable réelle) définies par

$$f_1(x) = |\sin(x)|\chi_{[-\pi,\pi]}(x)$$
 et $g_1(x) = |x|e^{-|x|}$.

(2) Si possible, en déduire les transformées de Fourier des fonctions f_2 et g_2 (d'une variable réelle) définies par

$$f_2(x) = \frac{1 + \cos(\pi x)}{1 - x^2}$$
 et $g_2(x) = \frac{1 - x^2}{(1 + x^2)^2}$

(3) Si cela a un sens, en déduire les valeurs des intégrales

$$\int_{\mathbb{R}} \frac{(1 + \cos(\pi x))^2}{(1 - x^2)^2} dx \quad \text{et} \quad \int_{-\infty}^0 \frac{(1 - x^2)^2}{(1 + x^2)^4} dx.$$

(4) Même question, mais pour l'intégrale

$$\int_0^{+\infty} \frac{1 + \cos(\pi x)}{(1 + x^2)^2} \, dx.$$

Exercice 6. (1) Si possible déterminer le produit de convolution des fonctions f et g définies sur \mathbb{R} par

$$f(x) = e^{-|x|}$$
 et $g(x) = x$.

(2) Même question avec

$$f(x) = e^x \chi_{[1,+\infty[}(x) \text{ et } g(x) = x \chi_{[-1,+\infty[}(x).$$

(1) S'il est défini, déterminer le produit de convolution des fonctions $\chi_{[-1,1]}$ et $\chi_{[-2,2]}$. Exercice 7. (2) Si possible, calculer

$$\int_{-\infty}^{0} \frac{\sin(x)\sin(2x)}{x^2} \, dx.$$

(1) Si possible, déterminer le produit de convolution des fonctions f et g définies sur $\mathbb R$ Exercice 8. par

$$f(x) = \begin{cases} 1 & \text{si } -1 \le x \le 3 \\ 0 & \text{sinon} \end{cases} \quad \text{et} \quad g(x) = \begin{cases} x/2 & \text{si } 0 \le x \le 2 \\ 0 & \text{sinon} \end{cases}.$$
(2) Représenter graphiquement les fonctions f, g et $f \star g$.