Compléments de Mathématiques Générales (Math2014) 2020-2021

Plan du cours du jeudi 17/09/20, A142, 16h (podcasté)

« Transformation de Fourier », suite et fin

Propriétés relatives à la dérivation

(1) Soit $N \in \mathbb{N}_0$. Si f est une fonction intégrable sur \mathbb{R} telle que la fonction $x \mapsto x^k f(x)$ soit encore intégrable quel que soit le naturel $k \leq N$, alors les transformées de Fourier $\mathcal{F}^{\pm}f$ sont N fois continûment dérivables sur \mathbb{R} et on a

$$D^k \mathcal{F}_y^{\pm} f = (\pm i)^k \mathcal{F}_y^{\pm} g_k \quad k \le N, \ y \in \mathbb{R}$$

avec

$$g_k(x) = x^k f(x).$$

(2) Soit $f \in C_N(\mathbb{R})$ tel que $D^k f$ soit intégrable quel soit le naturel k inférieur ou égal à N. Alors on a

$$\mathcal{F}_{y}^{\pm}(D^{k}f) = (\mp iy)^{k} \mathcal{F}_{y}^{\pm}f, \quad k \leq N, \ y \in \mathbb{R}.$$

Voir cours pour les preuves.

Propriété relative à l'intégrabilité

Soit $f \in C_2(\mathbb{R})$ tel que f, Df, D^2f soient intégrables sur \mathbb{R} . Alors les transformées de Fourier $\mathcal{F}^{\pm}f$ sont intégrables sur \mathbb{R} .

Voir cours pour la preuve.

Une introduction au produit de convolution (composition) de fonctions

Soient f et g deux fonctions définies sur \mathbb{R} . Si $y \in \mathbb{R}$ est tel que la fonction $x \mapsto f(y-x)g(x)$ soit intégrable sur \mathbb{R} alors on pose

$$(f * g)(y) = \int_{\mathbb{R}} f(y - x) g(x) dx.$$

Si cette intégrale existe pour tout y, le produit de composition (ou de convolution) de f et g est la fonction

$$y \in \mathbb{R} \mapsto (f * g)(y)$$

Remarque : si le produit de composition existe, alors on a

$$f * q = q * f$$
.

Propriété

Si f et g sont intégrables, alors

$$\mathcal{F}^{\pm}(f*q) = \mathcal{F}^{\pm}f \cdot \mathcal{F}^{\pm}q.$$

Voir cours pour un exemple, la preuve du résultat liant le produit de composition et la transformation de Fourier et des interprétations, applications.