« Mathématiques générales » MATH2007

Cours du Bloc 1 (Q1) en Chimie, géologie, informatique

Matière de l'examen de janvier 2021

Pour les modalités relatives à cet examen dans la note finale du cours : voir les pages web associées à ce cours.

Vu la situation sanitaire, l'examen se fera en ligne sous forme de QCM et Vrai-Faux. Il y aura de la théorie et des exercices, comme pour l'interrogation de novembre 2020. Les modalités pratiques seront très bientôt disponibles.

Etudiants devant être interrogés sur la matière de l'interrogation

Première partie

- 1. Problèmes élémentaires, unités et puissances de 10
- 2. Equations, inéquations et puissances
- 3. Trigonométrie
- 4. La droite dans le plan
- 5. Calcul vectoriel
- 6. Coniques
- 7. Nombres complexes
- 8. Eléments de base relatifs aux fonctions (fonctions élémentaires et leurs caractéristiques, domaines de définition, image, parité, périodicité, fonctions inverses, composition de fonctions (fonction de fonction))

et seconde partie

- 1. La formule du « binôme de Newton » : énoncé
- 2. Représentation d'ensembles
- 3. Décomposition en fractions simples
- 4. Définition des diverses limites (limite finie ou infinie en un réel, limite finie ou infinie à l'infini) et interprétation graphique
- 5. Le théorème des valeurs intermédiaires : énoncé, interprétation graphique et applications (y compris les preuves directes faites au cours)
- 6. Définition de la continuité et de la dérivabilité d'une fonction en un point de son domaine de définition. Interprétation graphique. Lien entre les deux notions (énoncés et démonstration)
- 7. Le théorème de l'Hospital
- 8. Dérivation d'un produit de fonctions.
- 9. Théorème des accroissements finis : énoncé et interprétation graphique. Enoncé du « Développement limité de Taylor »
- 10. Dérivation, monotonie, extrema (énoncés de propriétés et preuves faites au cours)
- 11. Primitivation : définition et étude de l'unicité (énoncés et preuves)
- 12. (i) Définition de la notion d'intégrabilité et d'intégrale d'une fonction sur un intervalle fermé borné [a,b] $(a,b\in\mathbb{R},\ a< b)$. Interprétation graphique. Intégration d'une fonction continue (sur un intervalle fermé borné) par variation de primitive : énoncé et preuve. (Les différentes définitions introduites dans ce cadre doivent également être bien connues.)
 - (ii) Définition de la notion d'intégrabilité et d'intégrale d'une fonction continue sur un intervalle non borné fermé de \mathbb{R} . Etude du cas fondamental de la fonction $x \mapsto x^r$ (r réel): énoncé et preuve.

- 13. (i) Définition des équations différentielles linéaires à coefficients constants. Structure de l'ensemble des solutions (énoncé et preuve)
 - (ii) Description complète des solutions des équations homogènes (énoncés complets et développements permettant de passer d'une expression à une autre dans le cas où cette situation se présente, à savoir lorsque les coefficients sont réels et qu'il est question de transformation d'exponentielles « imaginaires pures » en sinus et cosinus, et vice-versa)

Etudiants dispensés de la matière de l'interrogation

- 1. La formule du « binôme de Newton » : énoncé
- 2. Représentation d'ensembles
- 3. Décomposition en fractions simples
- 4. Définition des diverses limites (limite finie ou infinie en un réel, limite finie ou infinie à l'infini) et interprétation graphique
- 5. Le théorème des valeurs intermédiaires : énoncé, interprétation graphique et applications (y compris les preuves directes faites au cours)
- 6. Définition de la continuité et de la dérivabilité d'une fonction en un point de son domaine de définition. Interprétation graphique. Lien entre les deux notions (énoncés et démonstration)
- 7. Le théorème de l'Hospital
- 8. Dérivation d'un produit de fonctions .
- 9. Théorème des accroissements finis : énoncé et interprétation graphique. Enoncé du « Développement limité de Taylor »
- 10. Dérivation, monotonie, extrema (énoncés de propriétés et preuves faites au cours)
- 11. Primitivation : définition et étude de l'unicité (énoncés et preuves)
- 12. (i) Définition de la notion d'intégrabilité et d'intégrale d'une fonction sur un intervalle fermé borné [a,b] $(a,b\in\mathbb{R},\ a< b)$. Interprétation graphique. Intégration d'une fonction continue (sur un intervalle fermé borné) par variation de primitive : énoncé et preuve. (Les différentes définitions introduites dans ce cadre doivent également être bien connues.)
 - (ii) Définition de la notion d'intégrabilité et d'intégrale d'une fonction continue sur un intervalle non borné fermé de \mathbb{R} . Etude du cas fondamental de la fonction $x \mapsto x^r$ (r réel): énoncé et preuve.
- 13. (i) Définition des équations différentielles linéaires à coefficients constants. Structure de l'ensemble des solutions (énoncé et preuve)
 - (ii) Description complète des solutions des équations homogènes (énoncés complets et développements permettant de passer d'une expression à une autre dans le cas où cette situation se présente, à savoir lorsque les coefficients sont réels et qu'il est question de transformation d'exponentielles « imaginaires pures » en sinus et cosinus, et vice-versa)

Version: 28 novembre 2020(V1: 29/10/17) C. Amory, F. Bastin, J. Crasborn