

Mathématiques générales (MATH2007)

Année académique 2022-2023

Exercices de mathématiques Révisions en vue de l'examen du 5/01/2023

Les exercices précédés de (*) ne doivent pas être réalisés par les étudiants dispensés.

Exercices divers

1. (*) Résoudre les équations et inéquations suivantes (pour (c) et (d), on suppose que $x \in [\pi, 3\pi]$)

(a)
$$3x|x-2| = x-2$$

$$(b) \ \frac{|1-x|}{x^2-1} \ge x-1$$

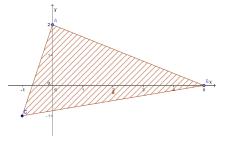
$$(c) \cos(3x) - \sin(x) = 0$$

$$(d) \sin(2x) \le \sin(x)$$

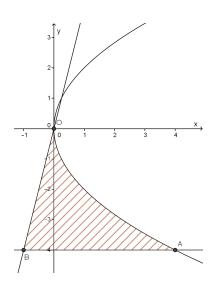
- 2. (*) Si elles sont définies, simplifier au maximum les expressions suivantes :
 - (a) $\cos(\ln(e^{-2\pi/3})) + \sin(\tan(3\pi/4))$
 - (b) $\arcsin(1 \cos(7\pi/6)) + \arccos(\cos(4\pi/3))$
- 3. (*) Dans un repère orthonormé, on donne les points A,B,C dont les coordonnées sont A(-1,0,a), B(1,2,-1) et C(4,1,2) $(a \in \mathbb{R})$. Calculer
 - (a) $3\overrightarrow{AB}.\overrightarrow{BC}$
 - (b) les composantes de $\overrightarrow{AC} \wedge \overrightarrow{BC}$
 - (c) les composantes de la projection orthogonale de \overrightarrow{AC} sur \overrightarrow{BC} .
- 4. (*) Résoudre les équations suivantes dans \mathbb{C} .
 - (a) $x^2 + 2 = -ix$
 - (b) $27 + x^3 = 0$
- 5. Représenter dans un repère orthonormé l'ensemble dont une description analytique est la suivante

$$\{(x,y) \in \mathbb{R}^2 : y^2 \ge x^2 \ge 1 - 9y^2\}.$$

- 6. Décrire analytiquement l'ensemble fermé hachuré suivant
 - (1) en commençant par l'ensemble de variation des abscisses puis, à abscisse fixée, l'ensemble de variation des ordonnées
 - $\left(2\right)$ idem mais en commençant par l'ensemble de variation des ordonnées.



- 7. Décrire analytiquement l'ensemble fermé hachuré suivant
 - (1) en commençant par l'ensemble de variation des abscisses puis, à abscisse fixée, l'ensemble de variation des ordonnées
 - (2) idem mais en commençant par l'ensemble de variation des ordonnées.



8. Soit une fonction f définie sur \mathbb{R} et et telle que

$$\lim_{x \to -\infty} f(x) = (-\pi/2)^+, \lim_{x \to 0} f(x) = 0 \text{ et } \lim_{x \to +\infty} f(x) = (\pi/2)^-.$$

Si elles existent et si les données sont suffisantes, déterminer les limites suivantes

(a)
$$\lim_{x \to -1} \frac{\ln(2x+3)}{|x+1|}$$

(b)
$$\lim_{x \to -\infty} \frac{|1+x|}{\sqrt{1-x^2}}$$

(c)
$$\lim_{x \to -\infty} \operatorname{arcotg}\left(\frac{x^3 - 1}{-2x}\right)$$

(d)
$$\lim_{x \to 0^+} \frac{\exp(-3x) - 1}{2x}$$

(e)
$$\lim_{x \to -\infty} (\ln(-5x - 1) - \ln|ex|)$$

$$(f) \lim_{x \to -1} \frac{x^3 - 4x^2 + x + 6}{x^2 - 1}$$

$$(g)$$
 $\lim_{x \to -\infty} f\left(\left|\frac{1-x^4}{3+x^2}\right|\right)$

- 9. Où la fonction $x \mapsto \arccos(\sqrt{1-x^2})$ est-elle définie? dérivable? En déterminer la dérivée première.
- 10. On donne les fonctions par les expressions explicites suivantes. En déterminer le domaine de définition, de continuité, de dérivabilité et en calculer la dérivée première.

$$(a) \ \frac{x}{x^2 - 1}$$

$$(b) \cos(\sqrt{1-4x^2})$$

$$(c) \exp\left(\frac{1}{1-x}\right)$$

$$(e) x \pi^x$$

(d)
$$arctg(sin(x^2))$$

(e)
$$x \pi^x$$

$$(f) x^x$$

(q)
$$\ln(|2x+1|+x)$$

(h)
$$(x-1)|x-1|$$

- 11. On donne la fonction f définie et continue sur [-1,1], dérivable sur]-1,1[. Déterminer le domaine de définition, de continuité, de dérivabilité et calculer la dérivée première des fonctions $g: x \mapsto f(\cos(-x))$ et $h: x \mapsto f(\sqrt{1-4x^2})$.
- 12. Si elles existent, déterminer la valeur des intégrales suivantes et simplifier la réponse au maximum.

(a)
$$\int_{-2}^{-1} \frac{\ln(-3x)}{x} dx$$

$$(b) \int_{-\infty}^{0} x e^{3x} dx$$

$$(c) \int_{-\infty}^{1} \frac{1}{2-x} dx$$

(d)
$$\int_{-4}^{4} \sqrt{x^2} dx$$

(e)
$$\int_{4}^{5} \frac{2}{x(x^2-6x+9)} dx$$

$$(f) \int_{-1}^{3} \frac{1}{\sqrt[3]{(x^2 - 4x + 4)^2}} dx$$

13. Déterminer l'ensemble des solutions des équations différentielles suivantes (f est la fonction inconnue)

$$a) D^2 f(x) + f(x) = e^{ix}$$

a)
$$D^2 f(x) + f(x) = e^{ix}$$
 b) $9D^2 f(x) + 6Df(x) + f(x) = \sin\left(\frac{x}{3}\right)$

(*) Problèmes élémentaires

- 1. La distance de freinage (en mètres) d'une voiture roulant à v km/h sur sol sec est donnée par
 - (a) $\left(\frac{v}{10}\right)^2 + \frac{v}{2}$ si cette voiture est équipée de freins normaux
 - (b) v si cette voiture est équipée de freins ABS spéciaux.

Déterminer les vitesses pour lesquelles la voiture équipée de freins ABS est plus performante quant à la distance de freinage.

2. Lors d'une interrogation, un étudiant doit répondre à 100 questions d'un QCM. Pour toute réponse correcte, il obtient 1 point et pour toute réponse incorrecte, on lui retire 0,25 point. Sachant qu'il obtient 53,75 points comme cote finale et qu'il est obligé de répondre à toutes les questions, quel est le nombre de réponses correctes fournies?

3