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Plan of talk

I 1. “Every party has a pooper, that’s why we invited you...”

I 2. Background and statement of problem

I 3. A positive result

I 4. Negative results
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2) Background and statement of problem

Definition
Let X be a real or complex Banach space and let n ∈ N.
P : X → K = R or C is an n−homogeneous (continuous)
polynomial if ∃A : X × · · · × X → K with A being continuous and
n−linear such that P(x) = A(x , ..., x),∀x ∈ X .

Without loss, we can assume that the associated A is also
symmetric. Clearly, each A gives rise to a unique P. Conversely,
by the polarization formula, given an n−homogeneous polynomial
P, one can recover the associated (unique) symmetric n−linear
form A.

Example

1. X = Rn, A an n × n real symmetric matrix, then
P : Rn → R, P(x) = xAxT is a 2−homogeneous polynomial.
2. X = `2 and P(x) =

∑∞
j=1 ajx

k
j , where (aj) ∈ `∞ and k ≥ 2.
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Problem
Let P : X → K be an n−homogeneous polynomial, P(0) = 0.
What can we say about the lineability (= spaceability) of P−1(0)?

Example

1. X = Rn,P(x) =
∑

j x2
j ⇒ P−1(0) = {0}.

2. X = Cn,P(x) =
∑

j x2
j ⇒ P−1(0) ⊃ span{e1 + ie2, e3 + ie4, ...}.

So, roughly, P−1(0) contains a vector space of dimension n/2.
3. X = Rn,P(x) =

∑
j x3

j ⇒ P−1(0) again contains a “big”
subspace.
Conclude: Lineability of P−1(0) depends on field K and on
homogeneity of P.
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3) A positive result

Theorem
(A. Plichko & A. Zagorodnyuk) Let X be an infinite dimensional
complex Banach space. Let P : X → C be an n−homogeneous
polynomial. Then P−1(0) contains an infinite dimensional
subspace.

We’ll sketch the proof, following an argument of RMA & P. Rueda
of a restated version of the above theorem.

Theorem
Let m, d ∈ N be given. Then ∃n = n(m, d), such that if
P : Cn → C is a d−homogeneous polynomial, then P−1(0)
contains an m−dimensional subspace.
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PROOF Idea: Induction. If d = 1, then we’re talking about linear
mappings Cn → C. So, n = m + 1 works.
If d = 2 and m are given, let’s determine the number n of

variables so that every 2−homogeneous polynomial P : Cn → C is
≡ 0 on an m−dimensional subspace of Cn.
Easy fact: If n ≥ 2, then ∃x1 ∈ Cn, x1 6= 0, such that P(x1) = 0.

Call S(x1) = {x ∈ Cn | A(x1, x) = 0}.
S(x1) ∼= [x1]

⊕
Cn−2. If n − 2 ≥ 2, i.e. if n ≥ 4, then the easy

fact ⇒ ∃x2 ∈ Cn−2, x2 6= 0, with P(x2) = 0.
Then [x1, x2] ⊂ P−1(0). Indeed
P(a1x1 + a2x2) = A(a1x1 + a2x2, a1x1 + a2x2) =
a21P(x1) + 2a1a2A(x1, x2) + a22P(x2) = 0. Call
S(x2) = {x ∈ Cn−2 | A(x2, x) = 0}. So, S(x2) ∼= [x2]

⊕
Cn−4, and

if n − 4 ≥ 2, i.e. n ≥ 6, then ∃x3 ∈ Cn−4 with P(x3) = 0. Then
[x1, x2, x3] ⊂ P−1(0), etc.
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To start the case of d = 3, i.e. 3−homogeneous polynomials P on
Cn, if n ≥ 2, then ∃x1 6= 0 such that P(x1) = 0.
Use the d = 1 and d = 2 cases to find x2 ∈ Cn (n ≥ 6) so that
P(x2) = A(x1, x1, x2) = A(x1, x2, x2) = 0. ... etc. ...
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Remark: In particular, this method works in infinite dimensions.
Namely:

Corollary

Let X be a complex Banach space, dim X =∞. Let P : X → C
be a polynomial, P(0) = 0. Then ∃Y ⊂ X , dim Y =∞, such that
P|Y ≡ 0.

We’ll return to this later.
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Question: What about a positive result in the case of real spaces?
First answer: Silly question! Take P : R2 → R,
P(x1, x2) = x2

1 + x2
2 , or more generally P : `2 → R, P(x) =

∑
j x2

j .
Second answers: (i) What about odd-homogeneous polynomials,
e.g. P(x1, x2) = x3

1 − x3
2?

(ii) What about 2−homogeneous polynomials on very big real
Banach spaces? In connection with (ii),

Definition
A polynomial P : X → R (X a real Banach space) is called
positive definite if P(x) ≥ 0 (∀x ∈ X ) and P(x) = 0 ⇐⇒ x = 0.

Remark X admits a positive definite 2−homogeneous polynomial
⇐⇒ X admits a continuous injection X → `2.
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Theorem
(RMA, C. Boyd, R. Ryan, & I. Zalduendo) Assume that the
(automatically non-separable) real Banach space X does not admit
any positive definite 2-homogeneous polynomial. Then for every
2−homogeneous polynomial P : X → R, P−1(0) contains an
infinite dimensional subspace.

Corollary

Assume that X does not admit any positive definite
4−homogeneous polynomial. Then every 3−homogeneous
polynomial P : X → R is such that P−1(0) contains a
non-separable subspace of X .
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4) Negative results

Return to complex case. Let P : X → C be an n−homogeneous
polynomial, X = infinite dimensional complex Banach space. We
know: ∃Y ⊂ X , dim Y =∞, such that P|Y ≡ 0.

Problem
What if X is a non-separable complex Banach space. Can we
then assert that ∃Y , non-separable, with P|Y ≡ 0?

No!

Theorem
(A. Avilés & S. Todorcevic) ∃ a 2−homogeneous polynomial
P : `1(Γ)→ C (Γ a ‘big’ index set) with the property that if
Y ⊂ `1(Γ) is such that P|Y ≡ 0, then Y is separable.
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(More about ‘size’ of zero-subspace ⊂ P−1(0))

Definition
Let P : X → K be an n−homogeneous polynomial. A subspace
Y ⊂ P−1(0) is maximal means @ Z , Z % Y , with P|Z ≡ 0.

Theorem
(A. Avilés & S. Todorcevic) ∃ a polynomial P : `1(Γ)→ C (Γ a
‘big’ index set) such that P−1(0) has both maximal separable and
maximal non-separable subspaces.

Proof (idea): First, Exercise: ∃ a collection C ⊂ P(N) satisfying
• ∀A ∈ C, |A| =∞,
• C is uncountable, and
• ∀A1 6= A2 in C, A1 ∩ A2 is finite.
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Let Γ = C ∪ N (disjoint union!). Define P : `1(Γ)→ C by

P(x , y) =
∑

n∈N,A∈C
xnyA.

(Here (x , y) = ((xn)n, (yA)A) ∈ `1(Γ).)
One shows {(x , 0) | x = (xn) ∈ `1} is a maximal (separable) space
in P−1(0). Since P ≡ 0 on {(0, y) | y ∈ `1(C)} (non-separable),
proof is complete. .
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Odd-homogeneous polynomials on real Banach spaces.

Theorem
(RMA & P. Hájek) Let k , n ∈ N, with n odd. Then ∃N = N(k, n)
such that ∀P : RN → R, P being n−homogeneous,
∃Y ⊂ RN , dimY = k , such that P|Y ≡ 0.

Remark: Not very good estimates on N = N(k , n). However,

Theorem
(RMA & P. Hájek) For every real Banach space X , dim X =∞,
for every odd n ∈ N, there is an n−homogeneous polynomial
P : X → R, such that P−1(0) contains no infinite dimensional
vector space.

In fact, our P satisfies: ∀x ∈ X , x 6= 0, ∃k ∈ N such that if
Y ⊂ X is such that x ∈ Y ⊂ P−1(0), then dim Y ≤ k.
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