# Subspaces of the zero set of a polynomial 

Richard M. Aron<br>Kent State University

Genericity \& small sets in analysis
Liege May 26 - 28, 2015

- 1. "Every party has a pooper, that's why we invited you..."
- 2. Background and statement of problem
- 3. A positive result
- 4. Negative results


## 2) Background and statement of problem

## Definition

Let $X$ be a real or complex Banach space and let $n \in \mathbb{N}$.
$P: X \rightarrow \mathbb{K}=\mathbb{R}$ or $\mathbb{C}$ is an $n$-homogeneous (continuous)
polynomial if $\exists A: X \times \cdots \times X \rightarrow \mathbb{K}$ with $A$ being continuous and $n$-linear such that $P(x)=A(x, \ldots, x), \forall x \in X$.
Without loss, we can assume that the associated $A$ is also symmetric. Clearly, each $A$ gives rise to a unique $P$. Conversely, by the polarization formula, given an $n$-homogeneous polynomial $P$, one can recover the associated (unique) symmetric $n$-linear form $A$.

## Example

1. $X=\mathbb{R}^{n}, A$ an $n \times n$ real symmetric matrix, then
$P: \mathbb{R}^{n} \rightarrow \mathbb{R}, P(x)=x A x^{T}$ is a 2 -homogeneous polynomial.
2. $X=\ell_{2}$ and $P(x)=\sum_{j=1}^{\infty} a_{j} x_{j}^{k}$, where $\left(a_{j}\right) \in \ell_{\infty}$ and $k \geq 2$.

## Problem

Let $P: X \rightarrow \mathbb{K}$ be an $n$-homogeneous polynomial, $P(0)=0$. What can we say about the lineability ( $=$ spaceability) of $P^{-1}(0)$ ?

Example

1. $X=\mathbb{R}^{n}, P(x)=\sum_{j} x_{j}^{2} \Rightarrow P^{-1}(0)=\{0\}$.
2. $X=\mathbb{C}^{n}, P(x)=\sum_{j} x_{j}^{2} \Rightarrow P^{-1}(0) \supset \operatorname{span}\left\{e_{1}+i e_{2}, e_{3}+i e_{4}, \ldots\right\}$.

So, roughly, $P^{-1}(0)$ contains a vector space of dimension $n / 2$.
3. $X=\mathbb{R}^{n}, P(x)=\sum_{j} x_{j}^{3} \Rightarrow P^{-1}(0)$ again contains a "big"
subspace.
Conclude: Lineability of $P^{-1}(0)$ depends on field $\mathbb{K}$ and on homogeneity of $P$.

## 3) A positive result

## Theorem

(A. Plichko \& A. Zagorodnyuk) Let $X$ be an infinite dimensional complex Banach space. Let $P: X \rightarrow \mathbb{C}$ be an $n$-homogeneous polynomial. Then $P^{-1}(0)$ contains an infinite dimensional subspace.
We'll sketch the proof, following an argument of RMA \& P. Rueda of a restated version of the above theorem.

## Theorem

Let $m, d \in \mathbb{N}$ be given. Then $\exists n=n(m, d)$, such that if
$P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is a $d$-homogeneous polynomial, then $P^{-1}(0)$ contains an m-dimensional subspace.

PROOF Idea: Induction. If $d=1$, then we're talking about linear mappings $\mathbb{C}^{n} \rightarrow \mathbb{C}$. So, $n=m+1$ works.
If $d=2$ and $m$ are given, let's determine the number $n$ of variables so that every 2 -homogeneous polynomial $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$ is $\equiv 0$ on an $m$-dimensional subspace of $\mathbb{C}^{n}$.
Easy fact: If $n \geq 2$, then $\exists x_{1} \in \mathbb{C}^{n}, x_{1} \neq 0$, such that $P\left(x_{1}\right)=0$.
Call $S\left(x_{1}\right)=\left\{x \in \mathbb{C}^{n} \mid A\left(x_{1}, x\right)=0\right\}$.
$S\left(x_{1}\right) \cong\left[x_{1}\right] \bigoplus \mathbb{C}^{n-2}$. If $n-2 \geq 2$, i.e. if $n \geq 4$, then the easy
fact $\Rightarrow \exists x_{2} \in \mathbb{C}^{n-2}, x_{2} \neq 0$, with $P\left(x_{2}\right)=0$.
Then $\left[x_{1}, x_{2}\right] \subset P^{-1}(0)$. Indeed
$P\left(a_{1} x_{1}+a_{2} x_{2}\right)=A\left(a_{1} x_{1}+a_{2} x_{2}, a_{1} x_{1}+a_{2} x_{2}\right)=$
$a_{1}^{2} P\left(x_{1}\right)+2 a_{1} a_{2} A\left(x_{1}, x_{2}\right)+a_{2}^{2} P\left(x_{2}\right)=0$. Call
$S\left(x_{2}\right)=\left\{x \in \mathbb{C}^{n-2} \mid A\left(x_{2}, x\right)=0\right\}$. So, $S\left(x_{2}\right) \cong\left[x_{2}\right] \oplus \mathbb{C}^{n-4}$, and if $n-4 \geq 2$, i.e. $n \geq 6$, then $\exists x_{3} \in \mathbb{C}^{n-4}$ with $P\left(x_{3}\right)=0$. Then $\left[x_{1}, x_{2}, x_{3}\right] \subset P^{-1}(0)$, etc.

To start the case of $d=3$, i.e. 3-homogeneous polynomials $P$ on $\mathbb{C}^{n}$, if $n \geq 2$, then $\exists x_{1} \neq 0$ such that $P\left(x_{1}\right)=0$.
Use the $d=1$ and $d=2$ cases to find $x_{2} \in \mathbb{C}^{n}(n \geq 6)$ so that $P\left(x_{2}\right)=A\left(x_{1}, x_{1}, x_{2}\right)=A\left(x_{1}, x_{2}, x_{2}\right)=0 . \ldots$ etc. $\ldots$

Remark: In particular, this method works in infinite dimensions. Namely:

## Corollary

Let $X$ be a complex Banach space, $\operatorname{dim} X=\infty$. Let $P: X \rightarrow \mathbb{C}$ be a polynomial, $P(0)=0$. Then $\exists Y \subset X, \operatorname{dim} Y=\infty$, such that $\left.P\right|_{Y} \equiv 0$.
We'll return to this later.

Question: What about a positive result in the case of real spaces?
First answer: Silly question! Take $P: \mathbb{R}^{2} \rightarrow \mathbb{R}$,
$P\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$, or more generally $P: \ell_{2} \rightarrow \mathbb{R}, P(x)=\sum_{j} x_{j}^{2}$.
Second answers: (i) What about odd-homogeneous polynomials, e.g. $P\left(x_{1}, x_{2}\right)=x_{1}^{3}-x_{2}^{3}$ ?
(ii) What about 2-homogeneous polynomials on very big real

Banach spaces? In connection with (ii),

## Definition

A polynomial $P: X \rightarrow \mathbb{R}$ ( $X$ a real Banach space) is called positive definite if $P(x) \geq 0(\forall x \in X)$ and $P(x)=0 \Longleftrightarrow x=0$.
Remark $X$ admits a positive definite 2 -homogeneous polynomial
$\Longleftrightarrow X$ admits a continuous injection $X \rightarrow \ell_{2}$.

## Theorem

(RMA, C. Boyd, R. Ryan, \& I. Zalduendo) Assume that the (automatically non-separable) real Banach space $X$ does not admit any positive definite 2-homogeneous polynomial. Then for every 2 -homogeneous polynomial $P: X \rightarrow \mathbb{R}, P^{-1}(0)$ contains an infinite dimensional subspace.

## Corollary

Assume that $X$ does not admit any positive definite 4-homogeneous polynomial. Then every 3-homogeneous polynomial $P: X \rightarrow \mathbb{R}$ is such that $P^{-1}(0)$ contains a non-separable subspace of $X$.

## 4) Negative results

Return to complex case. Let $P: X \rightarrow \mathbb{C}$ be an $n$-homogeneous polynomial, $X=$ infinite dimensional complex Banach space. We know: $\exists Y \subset X, \operatorname{dim} Y=\infty$, such that $\left.P\right|_{Y} \equiv 0$.

## Problem

What if $X$ is a non-separable complex Banach space. Can we then assert that $\exists Y$, non-separable, with $\left.P\right|_{Y} \equiv 0$ ?
No!

## Theorem

(A. Avilés \& S. Todorcevic) $\exists$ a 2 -homogeneous polynomial $P: \ell_{1}(\Gamma) \rightarrow \mathbb{C}$ ( $\Gamma$ a 'big' index set) with the property that if $Y \subset \ell_{1}(\Gamma)$ is such that $\left.P\right|_{Y} \equiv 0$, then $Y$ is separable.
(More about 'size' of zero-subspace $\subset P^{-1}(0)$ )

## Definition

Let $P: X \rightarrow \mathbb{K}$ be an $n$-homogeneous polynomial. A subspace $Y \subset P^{-1}(0)$ is maximal means $\nexists Z, Z \supsetneqq Y$, with $\left.P\right|_{z} \equiv 0$.

Theorem
(A. Avilés \& S. Todorcevic) $\exists$ a polynomial $P: \ell_{1}(\Gamma) \rightarrow \mathbb{C} \quad(\Gamma$ a 'big' index set) such that $P^{-1}(0)$ has both maximal separable and maximal non-separable subspaces.
Proof (idea): First, Exercise: $\exists$ a collection $\mathcal{C} \subset \mathcal{P}(\mathbb{N})$ satisfying

- $\forall A \in \mathcal{C},|A|=\infty$,
- $\mathcal{C}$ is uncountable, and
- $\forall A_{1} \neq A_{2}$ in $\mathcal{C}, A_{1} \cap A_{2}$ is finite.


## Let $\Gamma=\mathcal{C} \cup \mathbb{N}$ (disjoint union!). Define $P: \ell_{1}(\Gamma) \rightarrow \mathbb{C}$ by

$$
P(x, y)=\sum_{n \in \mathbb{N}, A \in \mathcal{C}} x_{n} y_{A} .
$$

$\left(\right.$ Here $\left.(x, y)=\left(\left(x_{n}\right)_{n},\left(y_{A}\right)_{A}\right) \in \ell_{1}(\Gamma).\right)$
One shows $\left\{(x, 0) \mid x=\left(x_{n}\right) \in \ell_{1}\right\}$ is a maximal (separable) space in $P^{-1}(0)$. Since $P \equiv 0$ on $\left\{(0, y) \mid y \in \ell_{1}(\mathcal{C})\right\}$ (non-separable), proof is complete. $\square$

## Odd-homogeneous polynomials on real Banach spaces.

Theorem
(RMA \& $P$. Hájek) Let $k, n \in \mathbb{N}$, with $n$ odd. Then $\exists N=N(k, n)$
such that $\forall P: \mathbb{R}^{N} \rightarrow \mathbb{R}, P$ being $n$-homogeneous,
$\exists Y \subset \mathbb{R}^{N}, \operatorname{dim} Y=k$, such that $\left.P\right|_{Y} \equiv 0$.
Remark: Not very good estimates on $N=N(k, n)$. However,
Theorem
(RMA \& P. Hájek) For every real Banach space $X, \operatorname{dim} X=\infty$, for every odd $n \in \mathbb{N}$, there is an $n$-homogeneous polynomial $P: X \rightarrow \mathbb{R}$, such that $P^{-1}(0)$ contains no infinite dimensional vector space.
In fact, our $P$ satisfies: $\forall x \in X, x \neq 0, \exists k \in \mathbb{N}$ such that if
$Y \subset X$ is such that $x \in Y \subset P^{-1}(0)$, then $\operatorname{dim} Y \leq k$.

