Subspaces of the zero set of a polynomial

RICHARD M. ARON KENT STATE UNIVERSITY

Genericity & small sets in analysis Liege May 26 – 28, 2015

Plan of talk

- ▶ 1. "Every party has a pooper, that's why we invited you..."
- > 2. Background and statement of problem
- 3. A positive result
- ▶ 4. Negative results

Definition

Let X be a real or complex Banach space and let $n \in \mathbb{N}$. $P: X \to \mathbb{K} = \mathbb{R}$ or \mathbb{C} is an *n*-homogeneous (continuous) polynomial if $\exists A: X \times \cdots \times X \to \mathbb{K}$ with A being continuous and *n*-linear such that $P(x) = A(x, ..., x), \forall x \in X$.

Without loss, we can assume that the associated A is also symmetric. **Clearly**, each A gives rise to a unique P. Conversely, by the *polarization formula*, given an n-homogeneous polynomial P, one can recover the associated (unique) symmetric n-linear form A.

Example

1. $X = \mathbb{R}^n$, A an $n \times n$ real symmetric matrix, then $P : \mathbb{R}^n \to \mathbb{R}$, $P(x) = xAx^T$ is a 2-homogeneous polynomial. 2. $X = \ell_2$ and $P(x) = \sum_{j=1}^{\infty} a_j x_j^k$, where $(a_j) \in \ell_{\infty}$ and $k \ge 2$.

Problem

Let $P : X \to \mathbb{K}$ be an *n*-homogeneous polynomial, P(0) = 0. What can we say about the lineability (= spaceability) of $P^{-1}(0)$?

Example

1. $X = \mathbb{R}^n$, $P(x) = \sum_j x_j^2 \Rightarrow P^{-1}(0) = \{0\}$. 2. $X = \mathbb{C}^n$, $P(x) = \sum_j x_j^2 \Rightarrow P^{-1}(0) \supset span\{e_1 + ie_2, e_3 + ie_4, ...\}$. So, roughly, $P^{-1}(0)$ contains a vector space of dimension n/2. 3. $X = \mathbb{R}^n$, $P(x) = \sum_j x_j^3 \Rightarrow P^{-1}(0)$ again contains a "big" subspace.

Conclude: Lineability of $P^{-1}(0)$ depends on field \mathbb{K} and on homogeneity of P.

Theorem

(A. Plichko & A. Zagorodnyuk) Let X be an infinite dimensional complex Banach space. Let $P : X \to \mathbb{C}$ be an *n*-homogeneous polynomial. Then $P^{-1}(0)$ contains an infinite dimensional subspace.

We'll sketch the proof, following an argument of RMA & P. Rueda of a restated version of the above theorem.

Theorem

Let $m, d \in \mathbb{N}$ be given. Then $\exists n = n(m, d)$, such that if $P : \mathbb{C}^n \to \mathbb{C}$ is a *d*-homogeneous polynomial, then $P^{-1}(0)$ contains an *m*-dimensional subspace.

PROOF Idea: Induction. If d = 1, then we're talking about *linear* mappings $\mathbb{C}^n \to \mathbb{C}$. So, n = m + 1 works.

If d = 2 and m are given, let's determine the number n of variables so that every 2-homogeneous polynomial $P : \mathbb{C}^n \to \mathbb{C}$ is $\equiv 0$ on an m-dimensional subspace of \mathbb{C}^n .

Easy fact: If $n \ge 2$, then $\exists x_1 \in \mathbb{C}^n$, $x_1 \ne 0$, such that $P(x_1) = 0$. Call $S(x_1) = \{x \in \mathbb{C}^n \mid A(x_1, x) = 0\}$. $S(x_1) \cong [x_1] \bigoplus \mathbb{C}^{n-2}$. If $n - 2 \ge 2$, i.e. if $n \ge 4$, then the easy fact $\Rightarrow \exists x_2 \in \mathbb{C}^{n-2}, x_2 \ne 0$, with $P(x_2) = 0$. Then $[x_1, x_2] \subset P^{-1}(0)$. Indeed $P(a_1x_1 + a_2x_2) = A(a_1x_1 + a_2x_2, a_1x_1 + a_2x_2) = a_1^2 P(x_1) + 2a_1a_2A(x_1, x_2) + a_2^2 P(x_2) = 0$. Call $S(x_2) = \{x \in \mathbb{C}^{n-2} \mid A(x_2, x) = 0\}$. So, $S(x_2) \cong [x_2] \bigoplus \mathbb{C}^{n-4}$, and if $n - 4 \ge 2$, i.e. $n \ge 6$, then $\exists x_3 \in \mathbb{C}^{n-4}$ with $P(x_3) = 0$. Then $[x_1, x_2, x_3] \subset P^{-1}(0)$, etc.

To start the case of d = 3, i.e. 3-homogeneous polynomials P on \mathbb{C}^n , if $n \ge 2$, then $\exists x_1 \ne 0$ such that $P(x_1) = 0$. Use the d = 1 and d = 2 cases to find $x_2 \in \mathbb{C}^n$ $(n \ge 6)$ so that $P(x_2) = A(x_1, x_1, x_2) = A(x_1, x_2, x_2) = 0$ etc. ...

Remark: In particular, this method works in *infinite dimensions*. *Namely:*

Corollary

Let X be a complex Banach space, dim $X = \infty$. Let $P : X \to \mathbb{C}$ be a polynomial, P(0) = 0. Then $\exists Y \subset X$, dim $Y = \infty$, such that $P|_Y \equiv 0$.

We'll return to this later.

Question: What about a positive result in the case of *real* spaces? First answer: Silly question! Take $P : \mathbb{R}^2 \to \mathbb{R}$, $P(x_1, x_2) = x_1^2 + x_2^2$, or more generally $P : \ell_2 \to \mathbb{R}$, $P(x) = \sum_j x_j^2$. Second answers: (i) What about **odd**-homogeneous polynomials, e.g. $P(x_1, x_2) = x_1^3 - x_2^3$? (ii) What about 2-homogeneous polynomials on **very big** real Banach spaces? In connection with (ii),

Definition

A polynomial $P: X \to \mathbb{R}$ (X a real Banach space) is called *positive definite* if $P(x) \ge 0$ ($\forall x \in X$) and $P(x) = 0 \iff x = 0$.

Remark X admits a positive definite 2-homogeneous polynomial $\iff X$ admits a continuous injection $X \rightarrow \ell_2$.

Theorem

(RMA, C. Boyd, R. Ryan, & I. Zalduendo) Assume that the (automatically non-separable) real Banach space X does not admit any positive definite 2-homogeneous polynomial. Then for every 2-homogeneous polynomial $P: X \to \mathbb{R}, P^{-1}(0)$ contains an infinite dimensional subspace.

Corollary

Assume that X does not admit any positive definite 4-homogeneous polynomial. Then every 3-homogeneous polynomial $P: X \to \mathbb{R}$ is such that $P^{-1}(0)$ contains a non-separable subspace of X. Return to complex case. Let $P: X \to \mathbb{C}$ be an *n*-homogeneous polynomial, $X = infinite dimensional complex Banach space. We know: <math>\exists Y \subset X$, dim $Y = \infty$, such that $P|_Y \equiv 0$.

Problem

What if X is a non-separable complex Banach space. Can we then assert that $\exists Y$, non-separable, with $P|_Y \equiv 0$? No!

Theorem

(A. Avilés & S. Todorcevic) \exists a 2-homogeneous polynomial $P : \ell_1(\Gamma) \to \mathbb{C}$ (Γ a 'big' index set) with the property that if $Y \subset \ell_1(\Gamma)$ is such that $P|_Y \equiv 0$, then Y is separable.

(More about 'size' of zero-subspace $\subset P^{-1}(0)$)

Definition

Let $P: X \to \mathbb{K}$ be an *n*-homogeneous polynomial. A subspace $Y \subset P^{-1}(0)$ is *maximal* means $\nexists Z, Z \supsetneq Y$, with $P|_Z \equiv 0$.

Theorem

(A. Avilés & S. Todorcevic) \exists a polynomial $P : \ell_1(\Gamma) \to \mathbb{C}$ (Γ a 'big' index set) such that $P^{-1}(0)$ has both maximal separable and maximal non-separable subspaces.

Proof (idea): First, **Exercise**: \exists a collection $C \subset \mathcal{P}(\mathbb{N})$ satisfying • $\forall A \in C, |A| = \infty$,

1

• C is uncountable, and

•
$$\forall A_1 \neq A_2$$
 in C , $A_1 \cap A_2$ is finite.

Let $\Gamma = \mathcal{C} \cup \mathbb{N}$ (*disjoint* union!). Define $P : \ell_1(\Gamma) \to \mathbb{C}$ by

$$P(x,y) = \sum_{n \in \mathbb{N}, A \in \mathcal{C}} x_n y_A$$

(Here $(x, y) = ((x_n)_n, (y_A)_A) \in \ell_1(\Gamma)$.) One shows $\{(x, 0) \mid x = (x_n) \in \ell_1\}$ is a maximal (separable) space in $P^{-1}(0)$. Since $P \equiv 0$ on $\{(0, y) \mid y \in \ell_1(\mathcal{C})\}$ (non-separable), proof is complete. \Box .

Odd-homogeneous polynomials on real Banach spaces.

Theorem

(RMA & P. Hájek) Let $k, n \in \mathbb{N}$, with n odd. Then $\exists N = N(k, n)$ such that $\forall P : \mathbb{R}^N \to \mathbb{R}$, P being n-homogeneous, $\exists Y \subset \mathbb{R}^N$, dimY = k, such that $P|_Y \equiv 0$.

Remark: Not very good estimates on N = N(k, n). However,

Theorem

(RMA & P. Hájek) For every real Banach space X, dim $X = \infty$, for every odd $n \in \mathbb{N}$, there is an n-homogeneous polynomial $P: X \to \mathbb{R}$, such that $P^{-1}(0)$ contains no infinite dimensional vector space.

-1

In fact, our *P* satisfies: $\forall x \in X, x \neq 0, \exists k \in \mathbb{N}$ such that if $Y \subset X$ is such that $x \in Y \subset P^{-1}(0)$, then dim $Y \leq k$.