Small and big sets in analysis

Frédéric Bayart

Université Blaise Pascal, Clermont-Ferrand

May 2015

What is a small set?

Aaronszajn null, capacity zero, cube null, Dirichlet, first category, Γ -null, Gauss null, Haar null, Helson, *HP*-null, measure zero, removable sets for bounded analytic functions, sets with small Hausdorff dimension, σ -porous, *U*-sets,...

Baire proves his famous theorem in a course that he gave in "Collège de France" in 1903/1904 and which was published in 1904. Let us quote Baire.

Un sous-ensemble M de la droite est non dense dans un intervalle PQ si, étant donné un sous-intervalle ouvert arbitraire AB de PQ, le complémentaire de M dans AB contient un sous-intervalle ouvert.

Nous dirons qu'un ensemble est de première catégorie dans un intervalle PQ s'il est contitué par la réunion d'une infinité dénombrable d'ensembles dont chacun est non-dense dans PQ. Je dis que si G est un ensemble de première catégorie sur un segment PQ, il y a dans toute portion de PQ des points qui n'appartiennent pas à G.

In other words, a first category subset of \mathbb{R} has empty interior!

Car G est formé d'une infinité dénombrable d'ensembles non-denses G_1, G_2, \ldots Soit *ab* un intervalle pris sur *PQ*. L'ensemble G_1 étant non-dense dans PQ, il est possible de déterminer dans *ab* une portion a_1b_1 ne contenant aucun point de G_1 . De même, dans a_1b_1 , il est possible de déterminer une portion a_2b_2 ne contenant aucun point de G_2 , et ainsi de suite. Nous formons ainsi une suite d'intervalles a_1b_1, a_2b_2, \ldots dont chacun est contenu dans le précédent et tels que $a_n b_n$ ne contient aucun point de G_1, G_2, \ldots Il existe un point A appartenant à tous ces intervalles. Ce point n'appartient pas à G puisqu'il ne peut appartenir à aucun des ensembles G_1, G_2, \ldots La proposition est donc démontrée.

Applications of Baire theorem - regularity

Theorem (Baire, 1904)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function. The following are equivalent:

- 1. For any $\emptyset \neq F \subset \mathbb{R}^n$ closed, $f_{|F}$ admits at least one point of continuity.
- 2. There exists a sequence (f_l) of continuous functions such that

$$\forall x \in \mathbb{R}^n, f(x) = \lim_{l \to +\infty} f_l(x).$$

Applications of Baire theorem - regularity

- A separately continuous function f : ℝ² → ℝ has points of continuity.
- A convex function f : X → ℝ with X a separable Banach space with X* separable has points of Fréchet-differentiability.

Let $f : \mathcal{U} \subset X \to Y$ and $x_0 \in \mathcal{U}$. We say that f is Gateaux-differentiable at x_0 if there exists $T \in \mathcal{L}(X, Y)$ such that for every $u \in X$,

$$\lim_{t\to 0}\frac{f(x_0 + tu) - f(x_0)}{t} = Tu.$$

If the limit exists uniformly in u on the unit sphere of X, we say that f is Fréchet-differentiable at x_0 .

Applications of Baire theorem - Uniformity

- Uniform boundedness principle: Let X, Y be Banach spaces and let (T_i)_{i∈I} be a family of L(X, Y) such that, for any x ∈ X, sup_{i∈I} ||T_ix|| < +∞. Then sup_{i∈I} ||T_i|| < +∞.
- Let f ∈ C[∞](ℝ, ℝ) so that, for any x ∈ ℝ, there exists n(x) with f^{n(x)}(x) = 0. Then f is a polynomial.

Applications of Baire theorem - Condensation of singularities

Contrapositive of the uniform boundedness principle.

- There exists a residual set of function f ∈ C(T) such that the Fourier series of f diverges at any point of a residual subset of T.
- Any function in a residual subset of C([0,1]) is nowhere differentiable.
- Existence of Besicovitch sets: there exist (plenty of) closed subsets of ℝ² with measure 0 containing a unit line segment in each direction. (Besicovitch, 1928, Körner, 2003).

Applications of Baire theorem - non void implies big

An operator T on a Banach space X is called hypercyclic provided there exists a vector $x \in X$ such that its orbit $\{T^n x : n \ge 0\}$ is dense in X. We denote by HC(T) the set of hypercyclic vectors for T. As soon as HC(T) is nonempty, it is a residual subset of X.

Smallness, a relative notion

The real line can be decomposed into a set of measure 0 and a set of first category.

Definition - porous sets

Let (X, d) be a metric space. A set $E \subset X$ is nowhere dense if and only if $\forall x \in E, \ \forall \varepsilon > 0, \ \exists z \in X \setminus E, \ \exists \delta > 0,$

$$d(x,z) < \varepsilon \text{ and } B(z,\delta) \cap E = \emptyset.$$

Let $\lambda \in (0, 1)$, $E \subset X$ and $x \in E$. We say that E is λ -porous at x if $\forall \varepsilon > 0$, $\exists z \in X \setminus E$,

$$d(x,z) < \varepsilon$$
 and $B(z,\lambda d(x,z)) \cap E = \emptyset$.

Properties of porous sets

A set $E \subset X$ is porous if it is porous at each of its points. It is λ -porous if it is λ -porous at each of its points, namely if $\forall x \in E, \ \forall \varepsilon > 0, \ \exists z \in X \setminus E,$

$$d(x,z) < \varepsilon$$
 and $B(z,\lambda d(x,z)) \cap E = \varnothing$.

Proposition

A porous set $E \subset \mathbb{R}^n$ is nowhere dense and has Lebesgue measure zero.

For almost every $x \in E$,

$$\lim_{\varepsilon\to 0}\frac{\mu(E\cap B(x,\varepsilon))}{\mu(B(x,\varepsilon))}=1.$$

σ -porous sets

A set $E \subset X$ is σ -porous if it is a countable union of porous sets. Corollary

A σ -porous set is meager and has Lebesgue measure zero.

Proposition

The notion of σ -porosity is a strict refinement of the notions of Lebesgue measure 0 sets and of sets of first category.

Write $\mathbb{R}^n = A \cup B$ with A meager and B with Lebesgue measure 0.

Proposition

There is a non- σ -porous set in \mathbb{R}^n which has measure 0 and is meager.

Argument : Let $A \subset \mathbb{R}^n$ and assume that A is not of the first category or is not of measure 0. Then A + A contains a non-empty open set. There exists a non- σ -porous set $A \subset \mathbb{R}^n$ such that, for every finite sequence (c_1, \ldots, c_n) , the set $\sum_{j=1}^n c_j A$ is of measure 0. (Tkadlec, 1983).

Example - Cantor set

Let $\alpha := (\alpha_n)$ be a sequence with $0 < \alpha_n < 1$. Let $C(\alpha) \subset [0, 1]$ be the associated symmetric Cantor set. At the *n*-th step, we delete from the 2^{n-1} remaining intervals of length d_n a concentric interval of size $\alpha_n d_n$.

Observation : $C(\alpha)$ has measure 0 if and only if $\sum_{n\geq 1} \alpha_n = +\infty$. Theorem (Humke, Thomson (1985)) $C(\alpha)$ is non σ -porous if and only if $\alpha_n \to 0$. In particular, for $\alpha_n = \frac{1}{n+1}$, we get an example of a measure 0 set

which is not σ -porous.

An example from number theory

For $x \in (0,1)$ and $k \ge 1$, let $a_k(x)$ be its k-th digit in its decimal expansion.

Theorem (Foran, 1985)

The set

$$E = \left\{ x \in X; \ \exists N \in \mathbb{N}, \ \forall n \ge N, \frac{\#\{k \le n; \ a_k(x) = 1\}}{n} \in [1/4, 3/4] \right\}$$

is a first category set which is not σ -porous. Remark : any Banach space supports a first category set which is not σ -porous.

A small history

The first to introduce porous sets (with a different terminology) is Denjoy (1920-1941).

Theorem

Let P be a perfect nowhere dense subset of \mathbb{R} and let $\lambda \in (0, 1)$. Then the sets of points in P at which P is not λ -porous is a first category subset of P.

Denjoy applied this result to the second symmetric derivative of a function $F : (a, b) \rightarrow \mathbb{R}$.

A small history

The first to introduce σ -porous sets was Dolženko (1967). He applied this notion to cluster sets of functions. Let $f : \mathbb{D} \to \mathbb{C}$, let $\theta \in (0, \pi/2)$, let $z \in \mathbb{T}$ and let S^z_{θ} be the corresponding Stolz angle. The Stolz cluster set associated to f and S^z_{θ} is defined as

$$C(f, \theta, z) = \{\ell \in \mathbb{C}; \exists (z_n) \in S^z_{\theta} \text{ s.t.} z_n \to z \text{ and } f(z_n) \to \ell \}.$$

Dolženko theorem

We say that z is singular if there exist $\theta_1 \neq \theta_2$ such that $C(f, \theta_1, z) \neq C(f, \theta_2, z)$.

Theorem

- The set of singular points is a σ -porous subset of \mathbb{T} .
- Given a σ-porous subset E of T, there exists a holomorphic function f : D → C such that every z ∈ E is a singular point for f.

Examples of σ -porous sets - a general method

How to prove that a set is σ -porous???

Proposition (Olevskii, 1991)

Let E be a convex nowhere dense set in a Banach space X. Then E is 1/2-porous.

proof

Corollary

The set of function which have convergent Fourier series at a specified point is σ -porous in $C([-\pi, \pi])$.

Other applications - Fréchet differentiability

Theorem (Preiss, Zajíček (1984))

Let X be a separable Banach space such that X^* is separable and let f be a continuous convex function defined on an open subset of X. Then the set of points of non-Fréchet differentiability of f is σ -porous.

Haar null sets

Beyond...

Other applications

Well-posed optimization problems :

Theorem (Deville, Revalski (2000))

Let X be a "smooth" Banach space and let Y be the Banach space of Lipschitz and C^1 -smooth functions on X. Let $f: X \to \mathbb{R} \cup \{\infty\}$ be a proper bounded from below lower semi-continuous function. Then set

 $T = \{g \in Y; f + g \text{ attains its minimum}\}$

has a complement which is σ -porous in Y.

In the previous theorem, "smooth" means that there exists a Lipschitz and \mathcal{C}^1 -function $b: X \to \mathbb{R}$ which is not identically equal to zero and which has bounded support.

A Counter-example

Theorem (B. (2005))

Let B be the backward shift on $\ell^p(\mathbb{N})$ or on $c_0(\mathbb{N})$. Then $[HC(2B)]^c$ is not σ -porous.

Theorem (Foran's lemma (1984))

Let \mathcal{F} be a nonempty family of nonempty closed sets. Assume that for each $F \in \mathcal{F}$ and each open ball B(x, r) with $F \cap B(x, r) \neq \emptyset$, there exists $G \in \mathcal{F}$ such that

- $G \cap B(x,r) \neq \emptyset$
- $G \cap B(x,r) \subset F \cap B(x,r)$
- $F \cap B(x,r)$ is 1/2-porous at no point of $G \cap B(x,r)$.

Then no set from \mathcal{F} is σ -porous.

An infinite-dimensional version of measure 0 set

On \mathbb{R}^n , the Lebesgue measure plays a particular role: it is invariant by translation.

On an infinite dimensional space, there does not exist a non-zero measure which is finite on balls and which is invariant by translation. Which properties of sets of Lebesgue measure 0 are important?

- If A has measure 0, any translate and any dilate of A has measure 0.
- A countable union of negligible sets is negligible.
- The complement of a negligible set is dense.

A further property: if X is infinite-dimensional, a compact set should be negligible.

Haar null sets

Let X be an abelian group endowed with a translation invariant metric d with respect to which X is complete and separable.

Definition (Christensen (1972))

A Borel set $A \subset X$ is called a Haar null set if there is a probability measure μ on X such that $\mu(x + A) = 0$ for any $x \in X$. μ is then called a transverse measure for A.

A subset of X is Haar null if it is contained in a Borel Haar null set. The complement of a Haar null set is called prevalent.

Haar null sets are also called sometimes shy sets (Hunt, Sauer, Yorke, 1992).

Why this terminology?

Proposition

Assume that X is locally compact. Then $A \subset X$ is Haar null if and only if its Haar measure is equal to 0.

⇐: let $μ_0$ be the Haar measure on X. If $μ_0(A) = 0$, then $μ_0(A + x) = 0$ for any x ∈ X and μ(A + x) = 0 for any measure μwhich is absolutely continuous with respect to $μ_0$. ⇒: Assume that μ(A + x) = 0 for any x ∈ X with μ a probability measure. By Fubini's theorem

$$\mu_0(A) = \int \mu_0(A+x)d\mu(x) = \int \int \chi_A(x+y)d\mu(x)d\mu_0(y)$$

= $\int \mu(A+y)d\mu_0(y) = 0.$

The required properties

- A translate of a Haar null set is Haar null.
- If X is a vector space, a dilate of a Haar null set is Haar null.
- A prevalent set is dense.
- A countable union of Haar null sets is Haar null.
- If X is not locally compact, any compact subset of X is Haar null.

The union of two Haar null sets is Haar null

Lemma

Let μ and ν be measures. If μ is transverse to a Borel set A, so is $\mu \star \nu$.

Thus, if μ is a probability measure which is transverse to A and ν is a probability measure which is transverse to B, then $\mu \star \nu$ is a probability measure which is transverse to $A \cup B$.

$$\mu \star \nu(S) = \int \mu(S-y) d\nu(y) = \int \nu(S-z) d\mu(z).$$

$$\mu \star \nu(A+x) = \int \mu(A-y+x)d\nu(y) = 0.$$

How to prove that a set is Haar null (or prevalent)?

Theorem (Hunt, 1994)

The set of nowhere Lipschitz function form a prevalent subset of C([0,1]).

Method 1 : use a probe space.

Definition

Let X be a Banach space. We call a finite-dimensional subspace $P \subset X$ a probe space for a set $M \subset X$ if Lebesgue measure on P is transverse to a Borel set containing the complement of M.

A set *M* admitting a probe *P* is prevalent. We say sometimes that is *k*-prevalent, with $k = \dim(P)$.

Probe space I

The set of nowhere Lipschitz function form a prevalent subset of $\mathcal{C}([0,1]).$

Can we use a one-dimensional probe space?

This would imply that there exists a function $g \in C([0, 1])$ such that, for any $f \in C([0, 1])$, $f + \lambda g$ is nowhere Lipschitz for almost every $\lambda \in \mathbb{R}$. Pick any g and define f = -xg. Then $f + \lambda g = (\lambda - x)g$ is always differentiable at $x = \lambda$.

A two-dimensional probe space

The set of nowhere Lipschitz function form a prevalent subset of $\mathcal{C}([0,1])$.

Let $g(x) = \sum_{k \ge 1} \frac{1}{k^2} \cos(2^k \pi x), \quad h(x) = \sum_{k=1}^{+\infty} \frac{1}{k^2} \sin(2^k \pi x).$

Lemma

There exists c > 0 such that, for any $\alpha, \beta \in \mathbb{R}$ and any closed interval $I \subset [0, 1]$ with length $\varepsilon > 0$, then

$$\max_{l} (\alpha g + \beta h) - \min_{l} (\alpha g + \beta h) \geq c \frac{\sqrt{\alpha^2 + \beta^2}}{(\log \varepsilon)^2}.$$

For M > 0 and $x \in [0, 1]$, we say that f is M-lipschitz at x if for any $y \in [0, 1]$, $|f(x) - f(y)| \le M|x - y|$.

A two-dimensional probe space

Let $M \geq 1$ and $f \in \mathcal{C}([0,1])$. We define

 $S_M = \{(\alpha, \beta) \in \mathbb{R}^2; f + \alpha g + \beta h \text{ is } M - \text{lipschitz at some } x \in [0, 1]\}.$

Let $N \ge 1$ and cover [0,1] by N closed intervals of length $\varepsilon = 1/N$. Let I be one of this intervals and let

 $S_{M,I} = \{(\alpha, \beta) \in \mathbb{R}^2; \ f + \alpha g + \beta h \text{ is } M - \text{lipschitz at some } x \in I\}.$

Let (α_1, β_1) , $(\alpha_2, \beta_2) \in S_{M,l}$. Then $f_1 = f + \alpha_1 g + \beta_1 h$ (resp. $f_2 = f + \alpha_2 g + \beta_2 h$) is *M*-lipschitz at some x_1 (resp. x_2). Thus,

$$|f_i(x) - f_i(x_i)| \leq M|x - x_i| \leq M\varepsilon.$$

By the triangle inequality,

$$|(f_1(x) - f_2(x)) - (f_1(x_1) - f_2(x_2))| \le 2M\varepsilon.$$

A two-dimensional probe space

We have

$$|(f_1(x) - f_2(x)) - (f_1(x_1) - f_2(x_2))| \le 2M\varepsilon$$

hence

$$\max_{l} (f_1 - f_2) - \min_{l} (f_1 - f - 2) \le 4M\varepsilon.$$

Now, $f_1 - f_2 = (\alpha_1 - \alpha_2)g + (\beta_1 - \beta_2)h$. By the lemma,
 $\sqrt{(\alpha_1^2 - \alpha_2^2) + (\beta_1^2 - \beta_2)^2} \le C'\varepsilon(\log\varepsilon)^2.$

Hence, $S_{M,I}$ is contained in a disk of radius $\varepsilon(\log \varepsilon)^2$ and $\operatorname{measure}(S_M) \leq C'' N \varepsilon^2 (\log \varepsilon)^4 = C'' \varepsilon (\log \varepsilon)^4.$

Since ε can be arbitrarily small, measure(S_M) = 0.

The stochastic process method

To prove that A is prevalent, it suffices to exhibit a random variable $U: (\Omega, \mathcal{F}, \mathbb{P}) \to X$ such that

 $\forall f \in X$, a.s. $f + U \in A$.

Here, we can choose for U the Brownian motion B, since

 $\forall f \in \mathcal{C}([0,1]), \ \forall \varepsilon > 0, \ f + B \text{ is nowhere } \mathcal{C}^{1/2+\varepsilon}.$

Theorem (Hunt (1994))

A prevalent function in C([0,1]) is nowhere C^{γ} for any $\gamma > 0$. Proof:

- We show that for a fixed $\gamma > 0$, a prevalent function in C([0, 1]) is nowhere C^{γ} (two methods...)
- Countable intersection!

The lack of Fubini's theorem

Be careful! Fubini's theorem becomes false for Haar null sets!

 $A = \{(f, t) \in L^2(\mathbb{T}) \times \mathbb{T}; \text{ the Fourier series of } f \text{ converges at } t\}.$

$$egin{array}{rll} A_{f_0}&=&\{t\in\mathbb{T};\;(f_0,t)\in A\}\ A^{t_0}&=&\{f\in L^2(\mathbb{T});\;(f,t_0)\in A\}. \end{array}$$

 A_{f_0} is prevalent (for any $f_0 \in L^2(\mathbb{T})$). A^{t_0} is Haar null (for any $t_0 \in \mathbb{T}$). Indeed, let g be any function whose Fourier series diverges at t_0 . Then for any $h \in L^2(\mathbb{T})$, $\{\lambda; h + \lambda g \in A^{t_0}\}$ contains at most one point. What about A? It is prevalent! (exercise!)

σ -porosity vs Haar null sets

In finite-dimensional spaces, σ -porous sets are Haar null.

Theorem (Preiss - Tišer (1995))

Each separate infinite-dimensional Banach space X can be decomposed into two Borel subsets $X = A \cup B$ such that the intersection of A with any line in E has (one-dimensional) measure zero and B is a countable union of closed σ -porous sets.

In particular, there exists a closed porous set in X which is not Haar null.

Haar null sets

Beyond...

Some examples

- Gateaux-differentiability of a Lipschitz function (Christensen, 1973): let X be a separable Banach space. Let f be a real valued Lipschitz function defined on an open set $U \subset X$. Then the set of points in U where f is not Gateaux differentiable is Haar null.
- Dynamical systems (Hunt, Sauer, Yorke 1992): for any k ≥ 1, a prevalent function f ∈ C^k(ℝⁿ, ℝⁿ) has the property that all of its periodic points are hyperbolic.
- Multifractal analysis (Fraysse, Jaffard, 2006): Let f ∈ C(ℝ^d). Let x ∈ ℝ^d and let h_f(x) be the Hölder exponent of f at x. For h ≥ 0, let d_h(f) = dim_H{x; h_f(x) = h}. If s d/p ≥ 0, then a prevalent function f ∈ B^{s,q}_p(ℝ^d) satisfies d_f(h) = hp sp + d for any h ∈ [s d/p, s].

HP-small sets

Let X be a (separable) Banach space, $E \subset X$, $\lambda \in (0, 1)$. E is λ -porous if

 $\forall x \in E, \ \forall \varepsilon > 0, \ \exists z \in X \setminus E, \|x - z\| \le \varepsilon \text{ and } B(z, \lambda \|x - z\|) \cap E = \varnothing.$

E is λ -lower porous if

 $\forall x \in E, \ \forall \varepsilon > 0, \ \exists z \in X \setminus E, \|x - z\| \leq \varepsilon \text{ and } B(z, \lambda \varepsilon) \cap E = \varnothing.$

Definition (Kolar, 2001)

E is HP_{λ} if for any $\varepsilon > 0$ there exist K > 0 and a sequence of balls $(B_n = B(y_n, \lambda \varepsilon))$ such that $||y_n|| \le \varepsilon$ and, for any $x \in X$,

$$\operatorname{card}\{n \in \mathbb{N}; (x + B_n) \cap E \neq \emptyset\} \leq K.$$

E is **HP-small** if there is some $\lambda \in (0, 1)$ such that *E* is a countable union of sets with property HP_{λ} .

HP-small sets

Theorem (Kolar, 2001)

A HP-small set is Haar null.

Lemma (Matoušková, 1998)

A set $E \subset X$ is Haar null if and only if for every $\delta > 0$ and every $\varepsilon > 0$, there exists a Borel probability measure μ with support contained in $\overline{B}(0,\varepsilon)$ and $\mu(E+x) \leq \delta$ for every $x \in X$. Let E be a closed HP_{λ} -set. Let $\varepsilon > 0$ and K > 0, $(B_n = B(y_n, \lambda \varepsilon))$ a sequence of balls as in the definition:

$$\forall x \in X, \text{ card} \{ n \in \mathbb{N}; (x + B_n) \cap E \neq \emptyset \} \leq K.$$

Let $n > K/\delta$ and define $\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i}$.

 σ -porous sets

Haar null sets

Beyond...

Theorem (Kolar, 2001)

The set of nowhere Lipschitz functions is HP-small in C([0,1]).

Γ-null sets

Let $T = [0, 1]^{\mathbb{N}}$ endowed with the product topology and product Lebesgue measure μ . Let X be a separable Banach space and $\Gamma(X)$ be the space of continuous mappings $T \to X$ having continuous partial derivatives.

Definition (Lindenstrauss, Preiss, 2003)

A Borel set $E \subset X$ is called Γ -null if

$$\{\gamma \in \Gamma(X); \ \mu(\gamma^{-1}(E)) > 0\}$$

is a first category subset of $\Gamma(X)$.

Translation invariant, coincide with Lebesgue measure 0 on \mathbb{R}^n , generally not comparable with Haar null sets.

Γ-null sets

Let X be a separable Banach space. Let f be a real valued Lipschitz function defined on an open set $U \subset X$. Then the set of points in U where f is not Gâteaux differentiable is Haar null.

Theorem (Lindenstrauss, Preiss 2003)

Every real-valued Lipschitz function on a Banach space X with separable dual is Fréchet differentiable Γ -almost everywhere provided that every porous set in X is Γ -null.

This last assumption is true on c_0 and false on ℓ^2 .

Further reading

- Y. Benyamini, J. Lindenstrauss, *Geometric nonlinear* functional Analysis, AMS Colloquium Publications 48 (2000).
- L. Zajíček, *Porosity and σ-porosity*, Real Analysis Exchange 13 (1987).
- L. Zajíček, On σ-porous sets in abstract spaces, Abstr. Appl. Anal. 5 (2005).
- B. Hunt, T. Sauer and J. Yorke, *Prevalence: a* translation-invariant almost every on infinite dimensional spaces, Bull. AMS 27 (1992).
- J. Lindenstrauss, D. Preiss, David and J.Tišer, *Fréchet differentiability of Lipschitz functions and porous sets in Banach spaces*, Annals of Mathematics Studies, 179 (2012).

A convex nowhere dense set E in a Banach space X is 1/2-porous. Let $x \in X$, $\varepsilon > 0$. Step 1. There exists $\phi \in X^*$, $\|\phi\| = 1$, c > 0 and $z \in B(x, \varepsilon/4)$ such that $\phi_{|F} < c$ and $\phi(z) \ge c$. Let $x \in X$, $\varepsilon > 0$.