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Introduction

Introduction

Recall. A function f ∈ C∞(Ω) is analytic at x0 ∈ Ω if there exist a compact
neighborhood K of x0 and two constants C, h > 0 such that

sup
x∈K

∣∣Dkf(x)
∣∣ ≤ Chkk! ∀k ∈ N0.

Question
How large is the set of nowhere analytic functions in the Fréchet space C∞([0, 1])?

Different notions.

1. Residuality

2. Prevalence

3. Lineability and algebrability
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Introduction

Lineability (Aron, Gurariy, Seoane-Sepúlveda 2005)

Let X be a topological vector space, M a subset of X , and µ a cardinal number.

(1) The set M is lineable if M ∪ {0} contains an infinite dimensional vector
subspace. If the dimension of this subspace is µ, M is said to be µ-lineable.

(2) When the above linear space can be chosen to be dense in X , we say that M is
(µ-)dense-lineable.

Algebrability (Aron, Pérez-García, Seoane-Sepúlveda 2006)

Let A be an algebra and M be a subset of A.

(1) The set M is algebrable if M ∪ {0} contains a subalgebra C of A such that the
cardinality of any system of generators of C is infinite. If the cardinality of this
system is µ, M is said to be µ-algebrable.

(2) If A is endowed with a topology and if the subalgebra C can be taken dense in A,
we say that M is (µ-)dense-algebrable.
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Introduction

Results
The set of nowhere analytic functions is residual, prevalent and c-algebrable in the
space C∞([0, 1]).

• Morgenstern 1954

• Cater 1984

• Salzmann and Zeller 1955

• Bernal-Gonzalez 2008

• Bastin et al. 2012

• Conejero et al. 2012

• Bartoszewicz et al. 2013

Question
Extension of these results to the context of Gevrey classes?
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“Nowhere Gevrey differentiable” functions

Gevrey classes
For a real number s ≥ 1, a function f ∈ C∞(Ω) is said to be Gevrey differentiable of
order s at x0 ∈ Ω if there exist a compact neighborhood K of x0 and two constants
C, h > 0 such that

sup
x∈K

∣∣Dkf(x)
∣∣ ≤ Chk(k!)s, ∀k ∈ N0.

−→ Intermediates between the space of analytic functions and the space
of infinitely differentiable functions

A nowhere Gevrey differentiable function on a subset I of R is a function that is not
Gevrey differentiable of order s at x0, for any x0 ∈ I and any s ≥ 1.
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“Nowhere Gevrey differentiable” functions

Existence of nowhere Gevrey differentiable functions
Let (λk)k∈N be a sequence of (0,+∞) such that

λk ≥ (k + 1)(k+1)2 and λk+1 ≥ 2

k∑
j=1

λ2+k−j
j , ∀k ∈ N.

The function f defined on R by

f(x) =

+∞∑
k=1

λ1−k
k eiλkx

belongs to C∞(R) and is nowhere Gevrey differentiable on R.

Result (Bastin, E., Nicolay 2012; Bastin, Conejero, E., Seoane 2014)

The set of nowhere Gevrey differentiable functions is residual, prevalent and
c-dense-algebrable in C∞([0, 1]).
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“Nowhere Gevrey differentiable” functions

Lineability. If eα(x) := exp(αx) and if f is any nowhere Gevrey differentiable
function, then it suffices to take

D = span{feα : α ∈ R}.

Algebrability. For every n ≥ 2, the function

fn(x) := exp
(
−x−

1
n−1

)
χ(0,+∞)(x)

is Gevrey differentiable of order n on R. We consider the function ψn defined by

ψn(x) := fn(x)fn(1− x)

and we define ρ by

ρ(x) :=

+∞∑
n=2

Cnψn
(
2nx− b2nxc

)
.

Then, take the minimum algebra A which contains the family of the nowhere Gevrey
functions ρeα with α ∈ H, whereH denote a Hamel basis of R.
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Denjoy-Carleman classes

Denjoy-Carleman classes

An arbitrary sequence of positive real numbers M = (Mk)k∈N0
is called a weight

sequence.

Definition
Let Ω be an open subset of R and M be a weight sequence. The space E{M}(Ω) is
defined by

E{M}(Ω) :=
{
f ∈ C∞(Ω) : ∀K ⊆ Ω compact ∃h > 0 such that ‖f‖MK,h < +∞

}
,

where

‖f‖MK,h := sup
n∈N0

sup
x∈K

|Dnf(x)|
hnMn

.

If f ∈ E{M}(Ω), we say that f is M -ultradifferentiable of Roumieu type on Ω.

Particular case. The weight sequences (k!)k∈N0
and ((k!)s)k∈N0

with s > 1.
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Denjoy-Carleman classes

Definition
Let Ω be an open subset of R and M be a weight sequence. The space E(M)(Ω) is
defined by

E(M)(Ω) :=
{
f ∈ C∞(Ω) : ∀K ⊆ Ω compact ,∀h > 0, ‖f‖MK,h < +∞

}
.

If f ∈ E(M)(Ω), we say that f is M -ultradifferentiable of Beurling type on Ω and we
use the representation

E(M)(Ω) = proj
←−−−
K⊆Ω

proj
←−−
h>0

EM,h(K)

to endow E(M)(Ω) with a structure of Fréchet space.

Questions.

• When do we have E{M}(Ω) ⊆ E(N)(Ω)?

• In that case, “how small” is E{M}(Ω) in E(N)(Ω)?
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Denjoy-Carleman classes

General assumptions.

• We assume that any weight sequence M is logarithmically convex, i.e.

M2
k ≤Mk−1Mk+1 ∀k ∈ N .

It implies that the space E{M}(Ω) is an algebra.

• Since we have E[M ](Ω) = E[M ′](Ω) where M ′k = Mk

M0
for every k, we assume

that any weight sequence M is such that M0 = 1.

• We usually assume that any weight sequence M is non-quasianalytic. Then
given an open subset Ω of R and a compact K ⊆ Ω, there exists a function of
E{M}(R) having a compact support included in Ω and being identically equal to 1
in K.
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Denjoy-Carleman classes

Let I be an open interval of R. A class E{M}(I) is quasianalytic if 0 is its unique
function f for which there is a point x ∈ I such that Dnf(x) = 0 for every n ∈ N0. If
this is not the case, we say that the class E{M}(I) is non-quasianalytic.

Denjoy-Carleman Theorem (1921,1926)
Let M be a log-convex weight sequence and let I be an open interval of R. TFAE:

1. E{M}(I) is quasianalytic,

2.
+∞∑
k=0

1

Lk
= +∞ where Lk = infj≥kM

1/j
j ,

3.
+∞∑
k=1

Mk−1

Mk
= +∞,

4.
+∞∑
k=1

(Mk)−1/k = +∞.

If one of the equivalent conditions is satisfied, we say that the weight sequence M is
quasianalytic. Otherwise, we say that the sequence is non-quasianalytic.
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Denjoy-Carleman classes

Inclusions between Denjoy-Carleman classes

Definition
Given two weight sequences M and N , we write

M �N ⇐⇒ lim
k→+∞

(
Mk

Nk

) 1
k

= 0

⇐⇒ ∀ρ > 0 ∃C > 0 : Mk ≤ CρkNk ∀k ∈ N0 .

Proposition
Let M,N be two weight sequences and let Ω be an open subset of R. Then

M �N ⇐⇒ E{M}(Ω) ⊆ E(N)(Ω)

and in this case, the inclusion is strict.

Proof.
⇒ Ok. supx∈K |Dkf(x)| ≤ ChkMk ≤ C ′(hρ)kNk
⇐ ??
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Denjoy-Carleman classes

Lemma 1
Let M and N be two weight sequences such that M �N . Then there exist a weight
sequence L such that

M � L�N.

Idea.
It suffices to set

Lk =
√
MkNk, ∀k ∈ N0 .

Then (
Mk

Lk

) 1
k

=

(
Mk

Nk

) 1
2k

→ 0

and (
Lk
Nk

) 1
k

=

(
Mk

Nk

) 1
2k

→ 0.
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Denjoy-Carleman classes

Lemma 1
Let M and N be two weight sequences such that M �N . Then there exist a weight
sequence L such that

M � L�N.

Lemma 2
Let M be a weight sequence and θ be the function defined on R by

θ(x) =

+∞∑
k=1

Mk

2k

(
Mk−1

Mk

)k
exp

(
2i

Mk

Mk−1
x

)
.

Then θ ∈ E{M}(R) and |Djθ(0)| ≥Mj for all j ∈ N0. In particular, this function
belongs to E{M}(R)\E(M)(R).
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Denjoy-Carleman classes

Proposition
Let M,N be two weight sequences and let Ω be an open subset of R. Then

M �N ⇐⇒ E{M}(Ω) ⊆ E(N)(Ω)

and in this case, the inclusion is strict.

Proof.
⇒ Ok
⇐ Up to a translation, we can assume that 0 ∈ Ω. Lemma 2 gives a function

θ ∈ E{M}(Ω) such that |Dkθ(0)| ≥Mk for every k ∈ N0. Then, θ ∈ E(N)(Ω) and for
every ρ > 0, there is C > 0 such that

Mk ≤ |Dkθ(0)| ≤ CρkNk, ∀k ∈ N0 .

Strict inclusion. By Lemma 1, there exists a weight sequence L such that M �L�N .
Again, Lemma 2 gives a function f which belongs to E{L}(Ω) but not to E(L)(Ω).
Since L�N , we have that E{L}(Ω) ⊆ E(N)(Ω) and since M � L, we have
E{M}(Ω) ⊆ E(L)(Ω). So f ∈ E(N)(Ω) \ E{M}(Ω).
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Denjoy-Carleman classes

Construction

Definition
We say that a function is nowhere in E{M} if its restriction to any open and non-empty
subset Ω of R never belongs to E{M}(Ω).

Proposition
Assume that M �N . If M is non-quasianalytic, there exists a function of E(N)(R)
which is nowhere in E{M}.

Proof. From Lemma 1, there is N? such that M � N? � N. Applying recursively
this lemma, we get a sequence (L(p))p∈N of weight sequences such that

M � L(1) � L(2) � · · ·� L(p) � · · ·�N? �N.

For every p ∈ N, Lemma 2 allows us to consider a function fp ∈ E{L(p)}(R) such that

|Djfp(0)| ≥ L(p)
j , ∀j ∈ N0 .
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Denjoy-Carleman classes

Since M is non-quasianalytic, there is φ ∈ E{M}(R) with compact support and
identically equal to 1 in a neighborhood of the origin. Let {xp : p ∈ N0} be a dense
subset of R with x0 = 0. For every p ∈ N, we can find kp > 0 such that the function

φp := φ
(
kp(· − xp)

)
has its support disjoint from {x0, . . . , xp−1}. We introduce the function gp defined on
R by

gp(x) := fp(x− xp)︸ ︷︷ ︸
∈E{L(p)}(R)

φp(x)︸ ︷︷ ︸
∈E{M}(R)

∈ E(N?)(R).

Let γp > 0 be such that

sup
x∈R
|Djgp(x)| ≤ γpN?

j , ∀j ∈ N0

and define the function g by

g :=
+∞∑
p=1

1

γp2p
gp.
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Denjoy-Carleman classes

1. g ∈ E(N)(R): for every j ∈ N0 and every x ∈ R, we have

+∞∑
p=1

1

γp2p
|Djgp(x)| ≤

+∞∑
p=1

1

2p
N?
j ≤ N?

j

which implies that g belongs to E{N?}(R) ⊆ E(N)(R).

2. g is nowhere in E{M}: By contradiction, assume that there exists an open subset Ω
of R such that g ∈ E{M}(Ω). Let p0 ∈ N such that xp0 ∈ Ω. Remark that

+∞∑
p=p0

1

γp2p
gp = g︸︷︷︸

∈E{M}(Ω)⊆E
(L(p0))

(Ω)

−
p0−1∑
p=1

1

γp2p
gp︸ ︷︷ ︸

∈E
(L(p0))

(Ω)

∈ E(L(p0))(Ω).

But, since the support of gp is disjoint of xp0 for every p > p0, we also have∣∣∣∣∣
+∞∑
p=p0

1

γp2p
Djgp(xp0)

∣∣∣∣∣ =
1

γp02p0

∣∣Djgp0(xp0)
∣∣ =

1

γp02p0

∣∣Djfp0(0)
∣∣ ≥ 1

γp02p0
L

(p0)
j

for every j ∈ N0, hence a contradiction.
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Denjoy-Carleman classes

Remark. Given a sequence (L(p))p∈N such that

M � L(1) � L(2) � · · ·� L(p) � · · ·�N∗ �N

and a dense subset {xp : p ∈ N0} of R, we have constructed a function
g ∈ E{N∗}(R) which is not in E(L(p))(Ω) for every neighbourhood Ω of xp.
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Denjoy-Carleman classes

Lineability

Maximal lineability
Assume that M �N . If M is non quasianalytic, the set of functions of E(N)(R) which
are nowhere in E{M} is c-dense-lineable.

Proof. For every t ∈ (0, 1), we set

L
(t)
k := (Mk)1−t(Nk)t ∀k ∈ N0 .

Then M � L(t) �N for all t ∈ (0, 1) and L(t) � L(s) if t < s.

Remark that

M � L( t2 ) � L( 2t
3 ) � L( 3t

4 ) � · · ·� L(t) �N, ∀t ∈ (0, 1).

and we can consider gt ∈ E{L(t)}(R) which is not in E(
L((1− 1

p
)t))(Ω), for any open

neighbourhood Ω of xp and for any p ≥ 2.
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Denjoy-Carleman classes

Let D denotes the subspace of E(N)(R) spanned by the functions gt, t ∈ (0, 1).

1. Every non-zero function of D is nowhere in E{M}
Let us fix α1, . . . , αN ∈ C with αN 6= 0 and t1 < · · · < tN in (0, 1), and let us
consider the function

G =

N∑
n=1

αngtn .

Assume that there exists an open subset Ω of R such that G ∈ E{M}(Ω). We fix

p ∈ N such that xp ∈ Ω and tN−1 <
(

1− 1
p

)
tN . Again, the function gtn belongs to

E{L(tN−1)}(R) for every n ≤ N − 1 and it follows that the function

gtN =
1

αN

(
G−

N−1∑
n=1

αngtn

)

belongs to E{L(tN−1)}(Ω). From the choice of p, we have

E{L(tN−1)}(Ω) ⊂ E(
L
((1− 1

p0
)tN))(Ω)

and this leads to a contradiction.
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Denjoy-Carleman classes

2. dimD = c
Assume there exist α1, . . . , αN ∈ C with αN 6= 0 and t1 < · · · < tN in (0, 1) such
that

∑N
n=1 αngtn = 0. Then

gtN =
−1

αN

N−1∑
n=1

αngtn

and since gtn ∈ E{L(tn)}(R) ⊂ E{
L(tN−1)

}(R) for every n ≤ N − 1, we get that

gtN ∈ E{L(tN−1)
}(R) ⊂ E(

L
((1− 1

p0
)tN )
)(R)

if p is such that (1− 1
p )tN > tN−1. This is a contradiction.
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Denjoy-Carleman classes

Dense-lineability

Remark. The set of polynomials is dense in E(N)(R). Let (tm)m∈N be a sequence of
different elements of (0, 1) and let (Ptm)m∈N be a dense sequence of polynomials in
E(N)(R).

We choose for every m ∈ N a positive constant km such that kmgtm ∈ Um, where
{Um : m ∈ N} is a basis of convex balanced absorbing neighbourhoods of 0 in
E(N)(R) .
We consider the linear space Dd spanned by{

Pt + ktgt : t ∈ (0, 1)
}

where kt = 1 and Pt = 0 if t 6= tm for every m ∈ N.

Result
Assume that M �N . If M is non quasianalytic, then Dd is dense in E(N)(R),
dimDd = c and any non zero function of Dd is nowhere in E{M}. In particular, the set
of functions of E(N)(R) which are nowhere in E{M} is c-dense-lineable in E(N)(R).
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Denjoy-Carleman classes

Case of countable unions

Let N be a weight sequence and let (M (n))n∈N be a sequence of weight sequences
such that M (n) �N for every n ∈ N. If there is n0 ∈ N such that the weight
sequence M (n0) is non quasianalytic, the set of functions of E(N)(R) which are
nowhere in

⋃
n∈N E{M(n)} is prevalent, residual and c-dense-lineable in E(N)(R).

Idea. Construct a weight sequence P such that⋃
n∈N
E{M(n)} ⊆ E{P} ( E(N).
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Denjoy-Carleman classes

Gevrey classes
They correspond to Roumieu classes given by the weight sequence

Mk := (k!)α, k ∈ N0 .

Particular case of Gevrey classes
Let α > 1. The set of functions of E((k!)α)(R) which are nowhere in E{(k!)β} for every
β ∈ (1, α), is c-dense-lineable in E((k!)α)(R).

Proof. It suffices to take the weight sequences M (n) (n ∈ N) given by

M
(n)
k := (k!)βn , k ∈ N0,

where (βn)n∈N is an increasing sequence of (1, α) that converges to α.

Proposition (Schmets, Valdivia 1991)
Let α > 1. The set of functions of E((k!)α)(R) which are nowhere in E{(k!)β} for every
β ∈ (1, α) is residual in E((k!)α)(R).
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More with weight functions

More with weight functions

Definition
A function ω : [0,+∞[→ [0,+∞[ is called a weight function if it is continuous,
increasing and satisfies ω(0) = 0 as well as the following conditions

(α) There exists L ≥ 1 such that ω(2t) ≤ Lω(t) + L, t ≥ 0,

(β)
∫ +∞

1

ω(t)

t2
dt < +∞,

(γ) log(t) = o(ω(t))) as t tends to infinity,

(δ) ϕω : t 7→ ω(et) is convex on [0,+∞[.

The Young conjugate of ϕω is defined by

ϕ∗ω(x) := sup{xy − ϕω(y) : y > 0}, x ≥ 0.

Examples.
ω(t) = t log(1 + t)−α, α > 1
ω(t) = tα, 0 < α < 1 (Gevrey classes)
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More with weight functions

For a compact subset K of Rn and m ∈ N, we define the space Emω (K) as the space
of functions f ∈ E(K) such that

‖f‖K,m := sup
α∈Nn0

sup
x∈K
|Dαf(x)| exp

(
− 1

m
ϕ∗ω(m|α|)

)
< +∞.

Definition
If ω is a weight function and if Ω is an open subset of Rn, we define the space
E{ω}(Ω) of ω-ultradifferentiable functions of Roumieu type on Ω by

E{ω}(Ω) := {f ∈ E(Ω) : ∀K ⊂ Ω compact ∃m ∈ N such that ‖f‖K,m < +∞} .
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More with weight functions

Definition
If ω is a weight function and if Ω is an open subset of Rn, the space E(ω)(Ω) of
ω-ultradifferentiable functions of Beurling type on Ω is defined by

E(ω)(Ω) := {f ∈ E(Ω) : ∀K ⊂ Ω compact ,∀m ∈ N, pK,m(f) < +∞} ,

where for every compact subset K of Rn and every m ∈ N

pK,m(f) := sup
α∈Nn0

sup
x∈K
|Dαf(x)| exp

(
−mϕ∗ω

(
|α|
m

))
.

We endow the space E(ω)(Ω) with its natural Fréchet space topology.
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More with weight functions

Given two weight functions ω and σ, we write

ω � σ ⇐⇒ σ(t) = o(ω(t)) as t→ +∞.

Result
Let ω and σ be two weight functions such that ω � σ. If Ω is a convex open subset of
Rn, then E{ω}(Ω) is strictly included in E(σ)(Ω).

Result
Let ω and σ be two weight functions such that ω � σ. The set of functions of E(σ)(Rn)
which are nowhere in E{ω} is dense-lineable in E(σ)(Rn).
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