Dense-lineability in classes of ultradifferentiable functions

Céline ESSER Celine.Esser@ulg.ac.be

University of Liège - Institute of Mathematics

Genericity & small sets in analysis Esneux – May 27, 2015

Introduction

Recall. A function $f \in C^{\infty}(\Omega)$ is analytic at $x_0 \in \Omega$ if there exist a compact neighborhood K of x_0 and two constants C, h > 0 such that

$$\sup_{x \in K} \left| D^k f(x) \right| \le C h^k k! \quad \forall k \in \mathbb{N}_0.$$

Question

How large is the set of nowhere analytic functions in the Fréchet space $C^{\infty}([0,1])$?

Introduction

Recall. A function $f \in C^{\infty}(\Omega)$ is analytic at $x_0 \in \Omega$ if there exist a compact neighborhood K of x_0 and two constants C, h > 0 such that

$$\sup_{x \in K} \left| D^k f(x) \right| \le C h^k k! \quad \forall k \in \mathbb{N}_0.$$

Question

How large is the set of nowhere analytic functions in the Fréchet space $\mathcal{C}^{\infty}([0,1])$?

Different notions.

- 1. Residuality
- 2. Prevalence
- 3. Lineability and algebrability

Introduction

Recall. A function $f \in C^{\infty}(\Omega)$ is analytic at $x_0 \in \Omega$ if there exist a compact neighborhood K of x_0 and two constants C, h > 0 such that

$$\sup_{x \in K} \left| D^k f(x) \right| \le C h^k k! \quad \forall k \in \mathbb{N}_0.$$

Question

How large is the set of nowhere analytic functions in the Fréchet space $\mathcal{C}^{\infty}([0,1])$?

Different notions.

- 1. Residuality
- 2. Prevalence
- 3. Lineability and algebrability

Lineability (Aron, Gurariy, Seoane-Sepúlveda 2005)

Let X be a topological vector space, M a subset of X, and μ a cardinal number.

- (1) The set M is lineable if $M \cup \{0\}$ contains an infinite dimensional vector subspace. If the dimension of this subspace is μ , M is said to be μ -lineable.
- (2) When the above linear space can be chosen to be dense in X, we say that M is $(\mu$ -)dense-lineable.

Lineability (Aron, Gurariy, Seoane-Sepúlveda 2005)

Let X be a topological vector space, M a subset of X, and μ a cardinal number.

- (1) The set M is lineable if $M \cup \{0\}$ contains an infinite dimensional vector subspace. If the dimension of this subspace is μ , M is said to be μ -lineable.
- (2) When the above linear space can be chosen to be dense in X, we say that M is $(\mu$ -)dense-lineable.

Algebrability (Aron, Pérez-García, Seoane-Sepúlveda 2006)

Let \mathcal{A} be an algebra and M be a subset of \mathcal{A} .

- (1) The set M is algebrable if $M \cup \{0\}$ contains a subalgebra C of A such that the cardinality of any system of generators of C is infinite. If the cardinality of this system is μ , M is said to be μ -algebrable.
- (2) If \mathcal{A} is endowed with a topology and if the subalgebra \mathcal{C} can be taken dense in \mathcal{A} , we say that M is (μ -)dense-algebrable.

Results

The set of nowhere analytic functions is residual, prevalent and c-algebrable in the space $\mathcal{C}^{\infty}([0,1])$.

- Morgenstern 1954
- Cater 1984
- Salzmann and Zeller 1955
- Bernal-Gonzalez 2008
- Bastin et al. 2012
- Conejero et al. 2012
- Bartoszewicz et al. 2013

Results

The set of nowhere analytic functions is residual, prevalent and c-algebrable in the space $\mathcal{C}^{\infty}([0,1])$.

- Morgenstern 1954
- Cater 1984
- Salzmann and Zeller 1955
- Bernal-Gonzalez 2008
- Bastin et al. 2012
- Conejero et al. 2012
- Bartoszewicz et al. 2013

Question

Extension of these results to the context of Gevrey classes?

• • • • • • • • • • • • •

For a real number $s \ge 1$, a function $f \in C^{\infty}(\Omega)$ is said to be Gevrey differentiable of order s at $x_0 \in \Omega$ if there exist a compact neighborhood K of x_0 and two constants C, h > 0 such that

$$\sup_{x \in K} \left| D^k f(x) \right| \le C h^k (k!)^s, \quad \forall k \in \mathbb{N}_0.$$

 \longrightarrow Intermediates between the space of analytic functions and the space of infinitely differentiable functions

For a real number $s \ge 1$, a function $f \in C^{\infty}(\Omega)$ is said to be Gevrey differentiable of order s at $x_0 \in \Omega$ if there exist a compact neighborhood K of x_0 and two constants C, h > 0 such that

$$\sup_{x \in K} \left| D^k f(x) \right| \le C h^k (k!)^s, \quad \forall k \in \mathbb{N}_0.$$

 \longrightarrow Intermediates between the space of analytic functions and the space of infinitely differentiable functions

A nowhere Gevrey differentiable function on a subset I of \mathbb{R} is a function that is not Gevrey differentiable of order s at x_0 , for any $x_0 \in I$ and any $s \ge 1$.

Existence of nowhere Gevrey differentiable functions

Let $(\lambda_k)_{k\in\mathbb{N}}$ be a sequence of $(0,+\infty)$ such that

$$\lambda_k \geq (k+1)^{(k+1)^2} \quad ext{and} \quad \lambda_{k+1} \geq 2\sum_{j=1}^k \lambda_j^{2+k-j}, \qquad orall k \in \mathbb{N}.$$

The function f defined on \mathbb{R} by

$$f(x) = \sum_{k=1}^{+\infty} \lambda_k^{1-k} e^{i\lambda_k x}$$

belongs to $\mathcal{C}^{\infty}(\mathbb{R})$ and is nowhere Gevrey differentiable on \mathbb{R} .

Existence of nowhere Gevrey differentiable functions

Let $(\lambda_k)_{k\in\mathbb{N}}$ be a sequence of $(0,+\infty)$ such that

$$\lambda_k \geq (k+1)^{(k+1)^2} \quad ext{and} \quad \lambda_{k+1} \geq 2\sum_{j=1}^k \lambda_j^{2+k-j}, \qquad orall k \in \mathbb{N}.$$

The function f defined on \mathbb{R} by

$$f(x) = \sum_{k=1}^{+\infty} \lambda_k^{1-k} e^{i\lambda_k x}$$

belongs to $\mathcal{C}^{\infty}(\mathbb{R})$ and is nowhere Gevrey differentiable on \mathbb{R} .

Result (Bastin, E., Nicolay 2012; Bastin, Conejero, E., Seoane 2014)

The set of nowhere Gevrey differentiable functions is residual, prevalent and c-dense-algebrable in $C^{\infty}([0,1])$.

イロト イロト イヨト イヨ

Lineability. If $e_{\alpha}(x) := \exp(\alpha x)$ and if f is any nowhere Gevrey differentiable function, then it suffices to take

 $\mathcal{D} = \operatorname{span}\{fe_{\alpha} : \alpha \in \mathbb{R}\}.$

(日) (四) (日) (日) (日)

Lineability. If $e_{\alpha}(x) := \exp(\alpha x)$ and if f is any nowhere Gevrey differentiable function, then it suffices to take

$$\mathcal{D} = \operatorname{span}\{fe_{\alpha} : \alpha \in \mathbb{R}\}.$$

Algebrability. For every $n \ge 2$, the function

$$f_n(x) := \exp\left(-x^{-\frac{1}{n-1}}\right)\chi_{(0,+\infty)}(x)$$

is Gevrey differentiable of order n on \mathbb{R} . We consider the function ψ_n defined by

$$\psi_n(x) := f_n(x)f_n(1-x)$$

and we define ρ by

$$\rho(x) := \sum_{n=2}^{+\infty} C_n \psi_n (2^n x - \lfloor 2^n x \rfloor).$$

Then, take the minimum algebra \mathcal{A} which contains the family of the nowhere Gevrey functions ρe_{α} with $\alpha \in \mathcal{H}$, where \mathcal{H} denote a Hamel basis of \mathbb{R} .

An arbitrary sequence of positive real numbers $M = (M_k)_{k \in \mathbb{N}_0}$ is called a weight sequence.

An arbitrary sequence of positive real numbers $M = (M_k)_{k \in \mathbb{N}_0}$ is called a weight sequence.

Definition

Let Ω be an open subset of \mathbb{R} and M be a weight sequence. The space $\mathcal{E}_{\{M\}}(\Omega)$ is defined by

 $\mathcal{E}_{\{M\}}(\Omega) := \big\{ f \in \mathcal{C}^{\infty}(\Omega) : \forall K \subseteq \Omega \text{ compact } \exists h > 0 \text{ such that } \|f\|_{K,h}^{M} < +\infty \big\},$

where

$$||f||_{K,h}^M := \sup_{n \in \mathbb{N}_0} \sup_{x \in K} \frac{|D^n f(x)|}{h^n M_n}.$$

If $f \in \mathcal{E}_{\{M\}}(\Omega)$, we say that f is M-ultradifferentiable of Roumieu type on Ω .

An arbitrary sequence of positive real numbers $M = (M_k)_{k \in \mathbb{N}_0}$ is called a weight sequence.

Definition

Let Ω be an open subset of \mathbb{R} and M be a weight sequence. The space $\mathcal{E}_{\{M\}}(\Omega)$ is defined by

$$\mathcal{E}_{\{M\}}(\Omega) := \big\{ f \in \mathcal{C}^{\infty}(\Omega) : \forall K \subseteq \Omega \text{ compact } \exists h > 0 \text{ such that } \|f\|_{K,h}^{M} < +\infty \big\},$$

where

$$||f||_{K,h}^M := \sup_{n \in \mathbb{N}_0} \sup_{x \in K} \frac{|D^n f(x)|}{h^n M_n}.$$

If $f \in \mathcal{E}_{\{M\}}(\Omega)$, we say that f is M-ultradifferentiable of Roumieu type on Ω .

Particular case. The weight sequences $(k!)_{k \in \mathbb{N}_0}$ and $((k!)^s)_{k \in \mathbb{N}_0}$ with s > 1.

Definition

Let Ω be an open subset of \mathbb{R} and M be a weight sequence. The space $\mathcal{E}_{(M)}(\Omega)$ is defined by

$$\mathcal{E}_{(M)}(\Omega) := \big\{ f \in \mathcal{C}^{\infty}(\Omega) : \forall K \subseteq \Omega \text{ compact }, \forall h > 0, \ \|f\|_{K,h}^{M} < +\infty \big\}.$$

If $f \in \mathcal{E}_{(M)}(\Omega)$, we say that f is M-ultradifferentiable of Beurling type on Ω and we use the representation

$$\mathcal{E}_{(M)}(\Omega) = \operatorname{proj}_{K \subseteq \Omega} \operatorname{proj}_{h > 0} \mathcal{E}_{M,h}(K)$$

to endow $\mathcal{E}_{(M)}(\Omega)$ with a structure of Fréchet space.

Definition

Let Ω be an open subset of \mathbb{R} and M be a weight sequence. The space $\mathcal{E}_{(M)}(\Omega)$ is defined by

$$\mathcal{E}_{(M)}(\Omega) := \big\{ f \in \mathcal{C}^{\infty}(\Omega) : \forall K \subseteq \Omega \text{ compact }, \forall h > 0, \ \|f\|_{K,h}^{M} < +\infty \big\}.$$

If $f \in \mathcal{E}_{(M)}(\Omega)$, we say that f is M-ultradifferentiable of Beurling type on Ω and we use the representation

$$\mathcal{E}_{(M)}(\Omega) = \operatorname{proj}_{K \subseteq \Omega} \operatorname{proj}_{h > 0} \mathcal{E}_{M,h}(K)$$

to endow $\mathcal{E}_{(M)}(\Omega)$ with a structure of Fréchet space.

Questions.

- When do we have $\mathcal{E}_{\{M\}}(\Omega) \subseteq \mathcal{E}_{(N)}(\Omega)$?
- In that case, "how small" is $\mathcal{E}_{\{M\}}(\Omega)$ in $\mathcal{E}_{(N)}(\Omega)$?

General assumptions.

• We assume that any weight sequence M is logarithmically convex, i.e.

$$M_k^2 \le M_{k-1} M_{k+1} \quad \forall k \in \mathbb{N} \,.$$

It implies that the space $\mathcal{E}_{\{M\}}(\Omega)$ is an algebra.

- Since we have $\mathcal{E}_{[M]}(\Omega) = \mathcal{E}_{[M']}(\Omega)$ where $M'_k = \frac{M_k}{M_0}$ for every k, we assume that any weight sequence M is such that $M_0 = 1$.
- We usually assume that any weight sequence M is non-quasianalytic. Then given an open subset Ω of \mathbb{R} and a compact $K \subseteq \Omega$, there exists a function of $\mathcal{E}_{\{M\}}(\mathbb{R})$ having a compact support included in Ω and being identically equal to 1 in K.

・ロト ・四ト ・ヨト ・ヨト

Let I be an open interval of \mathbb{R} . A class $\mathcal{E}_{\{M\}}(I)$ is quasianalytic if 0 is its unique function f for which there is a point $x \in I$ such that $D^n f(x) = 0$ for every $n \in \mathbb{N}_0$. If this is not the case, we say that the class $\mathcal{E}_{\{M\}}(I)$ is non-quasianalytic.

Let I be an open interval of \mathbb{R} . A class $\mathcal{E}_{\{M\}}(I)$ is quasianalytic if 0 is its unique function f for which there is a point $x \in I$ such that $D^n f(x) = 0$ for every $n \in \mathbb{N}_0$. If this is not the case, we say that the class $\mathcal{E}_{\{M\}}(I)$ is non-quasianalytic.

Denjoy-Carleman Theorem (1921,1926)

Let M be a log-convex weight sequence and let I be an open interval of \mathbb{R} . TFAE:

1. $\mathcal{E}_{\{M\}}(I)$ is quasianalytic,

2.
$$\sum_{k=0}^{+\infty} \frac{1}{L_k} = +\infty$$
 where $L_k = \inf_{j \ge k} M_j$
3. $\sum_{k=1}^{+\infty} \frac{M_{k-1}}{M_k} = +\infty$,
4. $\sum_{k=1}^{+\infty} (M_k)^{-1/k} = +\infty$.

If one of the equivalent conditions is satisfied, we say that the weight sequence M is quasianalytic. Otherwise, we say that the sequence is non-quasianalytic.

Inclusions between Denjoy-Carleman classes

Definition

Given two weight sequences M and N, we write

$$\begin{split} M \lhd N & \iff \lim_{k \to +\infty} \left(\frac{M_k}{N_k} \right)^{\frac{1}{k}} = 0 \\ & \iff \forall \rho > 0 \; \exists C > 0 \; : \; M_k \leq C \rho^k N_k \; \forall k \in \mathbb{N}_0 \, . \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □

Inclusions between Denjoy-Carleman classes

Definition

Given two weight sequences \boldsymbol{M} and $\boldsymbol{N},$ we write

$$M \triangleleft N \iff \lim_{k \to +\infty} \left(\frac{M_k}{N_k} \right)^{\frac{1}{k}} = 0$$
$$\iff \forall \rho > 0 \; \exists C > 0 \; : \; M_k \le C \rho^k N_k \; \forall k \in \mathbb{N}_0 \, .$$

Proposition

Let M, N be two weight sequences and let Ω be an open subset of \mathbb{R} . Then

$$M \triangleleft N \Longleftrightarrow \mathcal{E}_{\{M\}}(\Omega) \subseteq \mathcal{E}_{(N)}(\Omega)$$

and in this case, the inclusion is strict.

Proof.

$$\Rightarrow \mathsf{Ok.} \sup_{x \in K} |D^k f(x)| \le Ch^k M_k \le C'(h\rho)^k N_k \\ \Leftarrow \ree{eq: Characteristic structure}$$

Lemma 1

Let M and N be two weight sequences such that $M \lhd N$. Then there exist a weight sequence L such that

 $M \lhd L \lhd N.$

Idea.

It suffices to set

$$L_k = \sqrt{M_k N_k}, \quad \forall k \in \mathbb{N}_0.$$

Then

$$\left(\frac{M_k}{L_k}\right)^{\frac{1}{k}} = \left(\frac{M_k}{N_k}\right)^{\frac{1}{2k}} \to 0$$

and

$$\left(\frac{L_k}{N_k}\right)^{\frac{1}{k}} = \left(\frac{M_k}{N_k}\right)^{\frac{1}{2k}} \to 0.$$

・ロト ・ 日本・ ・ 日本・

Lemma 1

Let M and N be two weight sequences such that $M \lhd N$. Then there exist a weight sequence L such that

 $M \lhd L \lhd N.$

Lemma 2

Let M be a weight sequence and θ be the function defined on \mathbb{R} by

$$\theta(x) = \sum_{k=1}^{+\infty} \frac{M_k}{2^k} \left(\frac{M_{k-1}}{M_k}\right)^k \exp\left(2i\frac{M_k}{M_{k-1}}x\right)$$

Then $\theta \in \mathcal{E}_{\{M\}}(\mathbb{R})$ and $|D^j\theta(0)| \ge M_j$ for all $j \in \mathbb{N}_0$. In particular, this function belongs to $\mathcal{E}_{\{M\}}(\mathbb{R}) \setminus \mathcal{E}_{(M)}(\mathbb{R})$.

Proposition

Let M, N be two weight sequences and let Ω be an open subset of \mathbb{R} . Then

$$M \triangleleft N \Longleftrightarrow \mathcal{E}_{\{M\}}(\Omega) \subseteq \mathcal{E}_{(N)}(\Omega)$$

and in this case, the inclusion is strict.

Proof.

$\Rightarrow \mathsf{Ok}$

 \leftarrow Up to a translation, we can assume that $0 \in \Omega$. Lemma 2 gives a function $\theta \in \mathcal{E}_{\{M\}}(\Omega)$ such that $|D^k \theta(0)| \ge M_k$ for every $k \in \mathbb{N}_0$. Then, $\theta \in \mathcal{E}_{(N)}(\Omega)$ and for every $\rho > 0$, there is C > 0 such that

$$M_k \le |D^k \theta(0)| \le C \rho^k N_k, \quad \forall k \in \mathbb{N}_0.$$

Proposition

Let M, N be two weight sequences and let Ω be an open subset of \mathbb{R} . Then

$$M \triangleleft N \iff \mathcal{E}_{\{M\}}(\Omega) \subseteq \mathcal{E}_{(N)}(\Omega)$$

and in this case, the inclusion is strict.

Proof.

$\Rightarrow \mathsf{Ok}$

 \leftarrow Up to a translation, we can assume that $0 \in \Omega$. Lemma 2 gives a function $\theta \in \mathcal{E}_{\{M\}}(\Omega)$ such that $|D^k \theta(0)| \ge M_k$ for every $k \in \mathbb{N}_0$. Then, $\theta \in \mathcal{E}_{(N)}(\Omega)$ and for every $\rho > 0$, there is C > 0 such that

$$M_k \le |D^k \theta(0)| \le C \rho^k N_k, \quad \forall k \in \mathbb{N}_0.$$

<u>Strict inclusion.</u> By Lemma 1, there exists a weight sequence L such that $M \triangleleft L \triangleleft N$. Again, Lemma 2 gives a function f which belongs to $\mathcal{E}_{\{L\}}(\Omega)$ but not to $\mathcal{E}_{(L)}(\Omega)$. Since $L \triangleleft N$, we have that $\mathcal{E}_{\{L\}}(\Omega) \subseteq \mathcal{E}_{(N)}(\Omega)$ and since $M \triangleleft L$, we have $\mathcal{E}_{\{M\}}(\Omega) \subseteq \mathcal{E}_{(L)}(\Omega)$. So $f \in \mathcal{E}_{(N)}(\Omega) \setminus \mathcal{E}_{\{M\}}(\Omega)$.

・ロト ・四ト ・ヨト ・ヨト

Construction

Definition

We say that a function is nowhere in $\mathcal{E}_{\{M\}}$ if its restriction to any open and non-empty subset Ω of \mathbb{R} never belongs to $\mathcal{E}_{\{M\}}(\Omega)$.

Proposition

Assume that $M \lhd N$. If M is non-quasianalytic, there exists a function of $\mathcal{E}_{(N)}(\mathbb{R})$ which is nowhere in $\mathcal{E}_{\{M\}}$.

Construction

Definition

We say that a function is nowhere in $\mathcal{E}_{\{M\}}$ if its restriction to any open and non-empty subset Ω of \mathbb{R} never belongs to $\mathcal{E}_{\{M\}}(\Omega)$.

Proposition

Assume that $M \triangleleft N$. If M is non-quasianalytic, there exists a function of $\mathcal{E}_{(N)}(\mathbb{R})$ which is nowhere in $\mathcal{E}_{\{M\}}$.

Proof. From Lemma 1, there is N^* such that $M \triangleleft N^* \triangleleft N$. Applying recursively this lemma, we get a sequence $(L^{(p)})_{p \in \mathbb{N}}$ of weight sequences such that

$$M \lhd L^{(1)} \lhd L^{(2)} \lhd \cdots \lhd L^{(p)} \lhd \cdots \lhd N^{\star} \lhd N.$$

Construction

Definition

We say that a function is nowhere in $\mathcal{E}_{\{M\}}$ if its restriction to any open and non-empty subset Ω of \mathbb{R} never belongs to $\mathcal{E}_{\{M\}}(\Omega)$.

Proposition

Assume that $M \triangleleft N$. If M is non-quasianalytic, there exists a function of $\mathcal{E}_{(N)}(\mathbb{R})$ which is nowhere in $\mathcal{E}_{\{M\}}$.

Proof. From Lemma 1, there is N^* such that $M \triangleleft N^* \triangleleft N$. Applying recursively this lemma, we get a sequence $(L^{(p)})_{p \in \mathbb{N}}$ of weight sequences such that

$$M \lhd L^{(1)} \lhd L^{(2)} \lhd \cdots \lhd L^{(p)} \lhd \cdots \lhd N^{\star} \lhd N.$$

For every $p \in \mathbb{N}$, Lemma 2 allows us to consider a function $f_p \in \mathcal{E}_{\{L^{(p)}\}}(\mathbb{R})$ such that

$$|D^j f_p(0)| \ge L_j^{(p)}, \quad \forall j \in \mathbb{N}_0.$$

Since M is non-quasianalytic, there is $\phi \in \mathcal{E}_{\{M\}}(\mathbb{R})$ with compact support and identically equal to 1 in a neighborhood of the origin. Let $\{x_p : p \in \mathbb{N}_0\}$ be a dense subset of \mathbb{R} with $x_0 = 0$. For every $p \in \mathbb{N}$, we can find $k_p > 0$ such that the function

$$\phi_p := \phi \big(k_p (\cdot - x_p) \big)$$

has its support disjoint from $\{x_0, \ldots, x_{p-1}\}$. We introduce the function g_p defined on \mathbb{R} by

$$g_p(x) := \underbrace{f_p(x - x_p)}_{\in \mathcal{E}_{\{L^{(p)}\}}(\mathbb{R})} \underbrace{\phi_p(x)}_{\in \mathcal{E}_{\{M\}}(\mathbb{R})} \in \mathcal{E}_{(N^*)}(\mathbb{R}).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Since M is non-quasianalytic, there is $\phi \in \mathcal{E}_{\{M\}}(\mathbb{R})$ with compact support and identically equal to 1 in a neighborhood of the origin. Let $\{x_p : p \in \mathbb{N}_0\}$ be a dense subset of \mathbb{R} with $x_0 = 0$. For every $p \in \mathbb{N}$, we can find $k_p > 0$ such that the function

$$\phi_p := \phi\big(k_p(\cdot - x_p)\big)$$

has its support disjoint from $\{x_0, \ldots, x_{p-1}\}$. We introduce the function g_p defined on \mathbb{R} by

$$g_p(x) := \underbrace{f_p(x - x_p)}_{\in \mathcal{E}_{\{L^{(p)}\}}(\mathbb{R})} \underbrace{\phi_p(x)}_{\in \mathcal{E}_{\{M\}}(\mathbb{R})} \in \mathcal{E}_{(N^\star)}(\mathbb{R}).$$

Let $\gamma_p > 0$ be such that

$$\sup_{x \in \mathbb{R}} |D^j g_p(x)| \le \gamma_p N_j^\star, \quad \forall j \in \mathbb{N}_0$$

and define the function g by

$$g := \sum_{p=1}^{+\infty} \frac{1}{\gamma_p 2^p} g_p$$

・ロト ・四ト ・ヨト ・ヨト

1. $g\in\mathcal{E}_{(N)}(\mathbb{R})$: for every $j\in\mathbb{N}_0$ and every $x\in\mathbb{R},$ we have

$$\sum_{p=1}^{+\infty} \frac{1}{\gamma_p 2^p} |D^j g_p(x)| \le \sum_{p=1}^{+\infty} \frac{1}{2^p} N_j^* \le N_j^*$$

which implies that g belongs to $\mathcal{E}_{\{N^{\star}\}}(\mathbb{R}) \subseteq \mathcal{E}_{(N)}(\mathbb{R})$.

1. $g\in\mathcal{E}_{(N)}(\mathbb{R})$: for every $j\in\mathbb{N}_0$ and every $x\in\mathbb{R},$ we have

$$\sum_{p=1}^{+\infty} \frac{1}{\gamma_p 2^p} |D^j g_p(x)| \le \sum_{p=1}^{+\infty} \frac{1}{2^p} N_j^* \le N_j^*$$

which implies that g belongs to $\mathcal{E}_{\{N^{\star}\}}(\mathbb{R}) \subseteq \mathcal{E}_{(N)}(\mathbb{R})$.

2. g is nowhere in $\mathcal{E}_{\{M\}}$: By contradiction, assume that there exists an open subset Ω of \mathbb{R} such that $g \in \mathcal{E}_{\{M\}}(\Omega)$. Let $p_0 \in \mathbb{N}$ such that $x_{p_0} \in \Omega$. Remark that

$$\sum_{p=p_0}^{+\infty} \frac{1}{\gamma_p 2^p} g_p = \underbrace{g}_{\in \mathcal{E}_{\{M\}}(\Omega) \subseteq \mathcal{E}_{(L^{(p_0)})}(\Omega)} - \underbrace{\sum_{p=1}^{p_0-1} \frac{1}{\gamma_p 2^p} g_p}_{\in \mathcal{E}_{(L^{(p_0)})}(\Omega)} \in \mathcal{E}_{(L^{(p_0)})}(\Omega).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

1. $g\in\mathcal{E}_{(N)}(\mathbb{R})$: for every $j\in\mathbb{N}_0$ and every $x\in\mathbb{R},$ we have

$$\sum_{p=1}^{+\infty} \frac{1}{\gamma_p 2^p} |D^j g_p(x)| \le \sum_{p=1}^{+\infty} \frac{1}{2^p} N_j^* \le N_j^*$$

which implies that g belongs to $\mathcal{E}_{\{N^{\star}\}}(\mathbb{R}) \subseteq \mathcal{E}_{(N)}(\mathbb{R})$.

2. g is nowhere in $\mathcal{E}_{\{M\}}$: By contradiction, assume that there exists an open subset Ω of \mathbb{R} such that $g \in \mathcal{E}_{\{M\}}(\Omega)$. Let $p_0 \in \mathbb{N}$ such that $x_{p_0} \in \Omega$. Remark that

$$\sum_{p=p_0}^{+\infty} \frac{1}{\gamma_p 2^p} g_p = \underbrace{g}_{\in \mathcal{E}_{\{M\}}(\Omega) \subseteq \mathcal{E}_{(L^{(p_0)})}(\Omega)} - \underbrace{\sum_{p=1}^{p_0-1} \frac{1}{\gamma_p 2^p} g_p}_{\in \mathcal{E}_{(L^{(p_0)})}(\Omega)} \in \mathcal{E}_{(L^{(p_0)})}(\Omega).$$

But, since the support of g_p is disjoint of x_{p_0} for every $p > p_0$, we also have

$$\left|\sum_{p=p_0}^{+\infty} \frac{1}{\gamma_{p_0} 2^p} D^j g_p(x_{p_0})\right| = \frac{1}{\gamma_{p_0} 2^{p_0}} \left|D^j g_{p_0}(x_{p_0})\right| = \frac{1}{\gamma_{p_0} 2^{p_0}} \left|D^j f_{p_0}(0)\right| \ge \frac{1}{\gamma_{p_0} 2^{p_0}} L_j^{(p_0)}$$

for every $j \in \mathbb{N}_0$, hence a contradiction.

・ロト ・ 同ト ・ ヨト ・ ヨト

Remark. Given a sequence $(L^{(p)})_{p \in \mathbb{N}}$ such that

$$M \triangleleft L^{(1)} \triangleleft L^{(2)} \triangleleft \dots \triangleleft L^{(p)} \triangleleft \dots \triangleleft N^* \triangleleft N$$

and a dense subset $\{x_p : p \in \mathbb{N}_0\}$ of \mathbb{R} , we have constructed a function $g \in \mathcal{E}_{\{N^*\}}(\mathbb{R})$ which is not in $\mathcal{E}_{(L^{(p)})}(\Omega)$ for every neighbourhood Ω of x_p .

Lineability

Maximal lineability

Assume that $M \triangleright N$. If M is non quasianalytic, the set of functions of $\mathcal{E}_{(N)}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{M\}}$ is c-dense-lineable.

Proof. For every $t \in (0, 1)$, we set

$$L_k^{(t)} := (M_k)^{1-t} (N_k)^t \quad \forall k \in \mathbb{N}_0.$$

Then $M \triangleright L^{(t)} \triangleright N$ for all $t \in (0, 1)$ and $L^{(t)} \triangleright L^{(s)}$ if t < s.

Lineability

Maximal lineability

Assume that $M \triangleright N$. If M is non quasianalytic, the set of functions of $\mathcal{E}_{(N)}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{M\}}$ is c-dense-lineable.

Proof. For every $t \in (0, 1)$, we set

$$L_k^{(t)} := (M_k)^{1-t} (N_k)^t \quad \forall k \in \mathbb{N}_0.$$

Then $M \rhd L^{(t)} \rhd N$ for all $t \in (0,1)$ and $L^{(t)} \rhd L^{(s)}$ if t < s. Remark that

$$M \vartriangleright L^{\left(\frac{t}{2}\right)} \vartriangleright L^{\left(\frac{2t}{3}\right)} \vartriangleright L^{\left(\frac{3t}{4}\right)} \vartriangleright \cdots \vartriangleright L^{\left(t\right)} \vartriangleright N, \quad \forall t \in (0,1).$$

and we can consider $g_t \in \mathcal{E}_{\{L^{(t)}\}}(\mathbb{R})$ which is not in $\mathcal{E}_{\left(L^{\left(1-\frac{1}{p}\right)t}\right)}(\Omega)$, for any open neighbourhood Ω of x_p and for any $p \geq 2$.

Let \mathcal{D} denotes the subspace of $\mathcal{E}_{(N)}(\mathbb{R})$ spanned by the functions $g_t, t \in (0, 1)$.

・ロト ・ 日本・ ・ 日本・

Let \mathcal{D} denotes the subspace of $\mathcal{E}_{(N)}(\mathbb{R})$ spanned by the functions $g_t, t \in (0, 1)$.

1. Every non-zero function of \mathcal{D} is nowhere in $\mathcal{E}_{\{M\}}$ Let us fix $\alpha_1, \ldots, \alpha_N \in \mathbb{C}$ with $\alpha_N \neq 0$ and $t_1 < \cdots < t_N$ in (0, 1), and let us consider the function

$$G = \sum_{n=1}^{N} \alpha_n g_{t_n}.$$

Assume that there exists an open subset Ω of \mathbb{R} such that $G \in \mathcal{E}_{\{M\}}(\Omega)$.

Let \mathcal{D} denotes the subspace of $\mathcal{E}_{(N)}(\mathbb{R})$ spanned by the functions $g_t, t \in (0, 1)$.

1. Every non-zero function of \mathcal{D} is nowhere in $\mathcal{E}_{\{M\}}$ Let us fix $\alpha_1, \ldots, \alpha_N \in \mathbb{C}$ with $\alpha_N \neq 0$ and $t_1 < \cdots < t_N$ in (0, 1), and let us consider the function

$$G = \sum_{n=1}^{N} \alpha_n g_{t_n}.$$

Assume that there exists an open subset Ω of \mathbb{R} such that $G \in \mathcal{E}_{\{M\}}(\Omega)$. We fix $p \in \mathbb{N}$ such that $x_p \in \Omega$ and $t_{N-1} < \left(1 - \frac{1}{p}\right) t_N$. Again, the function g_{t_n} belongs to $\mathcal{E}_{\{L^{(t_{N-1})}\}}(\mathbb{R})$ for every $n \leq N-1$ and it follows that the function

$$g_{t_N} = \frac{1}{\alpha_N} \left(G - \sum_{n=1}^{N-1} \alpha_n g_{t_n} \right)$$

belongs to $\mathcal{E}_{\{L^{(t_{N-1})}\}}(\Omega).$ From the choice of p, we have

$$\mathcal{E}_{\{L^{(t_{N-1})}\}}(\Omega) \subset \mathcal{E}_{\left(L^{\left((1-\frac{1}{p_{0}})t_{N}\right)}\right)}(\Omega)$$

and this leads to a contradiction.

C. Esser (ULg)

・ロン ・回 と ・ ヨン・

2. dim $\mathcal{D} = \mathfrak{c}$ Assume there exist $\alpha_1, \ldots, \alpha_N \in \mathbb{C}$ with $\alpha_N \neq 0$ and $t_1 < \cdots < t_N$ in (0, 1) such that $\sum_{n=1}^N \alpha_n g_{t_n} = 0$. Then

$$g_{t_N} = \frac{-1}{\alpha_N} \sum_{n=1}^{N-1} \alpha_n g_{t_n}$$

and since $g_{t_n} \in \mathcal{E}_{\{L^{(t_n)}\}}(\mathbb{R}) \subset \mathcal{E}_{\{L^{(t_{N-1})}\}}(\mathbb{R})$ for every $n \leq N-1$, we get that

$$g_{t_N} \in \mathcal{E}_{\left\{L^{(t_{N-1})}\right\}}(\mathbb{R}) \subset \mathcal{E}_{\left(L^{((1-\frac{1}{p_0})t_N)}\right)}(\mathbb{R})$$

if p is such that $(1 - \frac{1}{p})t_N > t_{N-1}$. This is a contradiction.

イロン 不良 とくほう 不良 とう

Remark. The set of polynomials is dense in $\mathcal{E}_{(N)}(\mathbb{R})$. Let $(t_m)_{m\in\mathbb{N}}$ be a sequence of different elements of (0,1) and let $(P_{t_m})_{m\in\mathbb{N}}$ be a dense sequence of polynomials in $\mathcal{E}_{(N)}(\mathbb{R})$.

Remark. The set of polynomials is dense in $\mathcal{E}_{(N)}(\mathbb{R})$. Let $(t_m)_{m\in\mathbb{N}}$ be a sequence of different elements of (0,1) and let $(P_{t_m})_{m\in\mathbb{N}}$ be a dense sequence of polynomials in $\mathcal{E}_{(N)}(\mathbb{R})$.

We choose for every $m \in \mathbb{N}$ a positive constant k_m such that $k_m g_{t_m} \in U_m$, where $\{U_m : m \in \mathbb{N}\}$ is a basis of convex balanced absorbing neighbourhoods of 0 in $\mathcal{E}_{(N)}(\mathbb{R})$.

Remark. The set of polynomials is dense in $\mathcal{E}_{(N)}(\mathbb{R})$. Let $(t_m)_{m\in\mathbb{N}}$ be a sequence of different elements of (0,1) and let $(P_{t_m})_{m\in\mathbb{N}}$ be a dense sequence of polynomials in $\mathcal{E}_{(N)}(\mathbb{R})$.

We choose for every $m \in \mathbb{N}$ a positive constant k_m such that $k_m g_{t_m} \in U_m$, where $\{U_m : m \in \mathbb{N}\}$ is a basis of convex balanced absorbing neighbourhoods of 0 in $\mathcal{E}_{(N)}(\mathbb{R})$.

We consider the linear space \mathcal{D}_d spanned by

$$\{P_t + k_t g_t : t \in (0,1)\}$$

where $k_t = 1$ and $P_t = 0$ if $t \neq t_m$ for every $m \in \mathbb{N}$.

Remark. The set of polynomials is dense in $\mathcal{E}_{(N)}(\mathbb{R})$. Let $(t_m)_{m\in\mathbb{N}}$ be a sequence of different elements of (0,1) and let $(P_{t_m})_{m\in\mathbb{N}}$ be a dense sequence of polynomials in $\mathcal{E}_{(N)}(\mathbb{R})$.

We choose for every $m \in \mathbb{N}$ a positive constant k_m such that $k_m g_{t_m} \in U_m$, where $\{U_m : m \in \mathbb{N}\}$ is a basis of convex balanced absorbing neighbourhoods of 0 in $\mathcal{E}_{(N)}(\mathbb{R})$.

We consider the linear space \mathcal{D}_d spanned by

$$\{P_t + k_t g_t : t \in (0,1)\}$$

where $k_t = 1$ and $P_t = 0$ if $t \neq t_m$ for every $m \in \mathbb{N}$.

Result

Assume that $M \triangleright N$. If M is non quasianalytic, then \mathcal{D}_d is dense in $\mathcal{E}_{(N)}(\mathbb{R})$, dim $\mathcal{D}_d = \mathfrak{c}$ and any non zero function of \mathcal{D}_d is nowhere in $\mathcal{E}_{\{M\}}$. In particular, the set of functions of $\mathcal{E}_{(N)}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{M\}}$ is \mathfrak{c} -dense-lineable in $\mathcal{E}_{(N)}(\mathbb{R})$.

・ロト ・四ト ・ヨト ・ヨト

Case of countable unions

Let N be a weight sequence and let $(M^{(n)})_{n\in\mathbb{N}}$ be a sequence of weight sequences such that $M^{(n)} > N$ for every $n \in \mathbb{N}$. If there is $n_0 \in \mathbb{N}$ such that the weight sequence $M^{(n_0)}$ is non quasianalytic, the set of functions of $\mathcal{E}_{(N)}(\mathbb{R})$ which are nowhere in $\bigcup_{n\in\mathbb{N}} \mathcal{E}_{\{M^{(n)}\}}$ is prevalent, residual and \mathfrak{c} -dense-lineable in $\mathcal{E}_{(N)}(\mathbb{R})$.

Idea. Construct a weight sequence P such that

$$\bigcup_{n \in \mathbb{N}} \mathcal{E}_{\{M^{(n)}\}} \subseteq \mathcal{E}_{\{P\}} \subsetneq \mathcal{E}_{(N)}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

They correspond to Roumieu classes given by the weight sequence

 $M_k := (k!)^{\alpha}, \quad k \in \mathbb{N}_0.$

Particular case of Gevrey classes

Let $\alpha > 1$. The set of functions of $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{(k!)^{\beta}\}}$ for every $\beta \in (1, \alpha)$, is c-dense-lineable in $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$.

They correspond to Roumieu classes given by the weight sequence

 $M_k := (k!)^{\alpha}, \quad k \in \mathbb{N}_0.$

Particular case of Gevrey classes

Let $\alpha > 1$. The set of functions of $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{(k!)^{\beta}\}}$ for every $\beta \in (1, \alpha)$, is c-dense-lineable in $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$.

Proof. It suffices to take the weight sequences $M^{(n)}$ $(n \in \mathbb{N})$ given by

$$M_k^{(n)} := (k!)^{\beta_n}, \quad k \in \mathbb{N}_0,$$

where $(\beta_n)_{n \in \mathbb{N}}$ is an increasing sequence of $(1, \alpha)$ that converges to α .

・ロト ・回ト ・ヨト ・ヨト

They correspond to Roumieu classes given by the weight sequence

 $M_k := (k!)^{\alpha}, \quad k \in \mathbb{N}_0.$

Particular case of Gevrey classes

Let $\alpha > 1$. The set of functions of $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{(k!)^{\beta}\}}$ for every $\beta \in (1, \alpha)$, is c-dense-lineable in $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$.

Proof. It suffices to take the weight sequences $M^{(n)}$ $(n \in \mathbb{N})$ given by

$$M_k^{(n)} := (k!)^{\beta_n}, \quad k \in \mathbb{N}_0,$$

where $(\beta_n)_{n \in \mathbb{N}}$ is an increasing sequence of $(1, \alpha)$ that converges to α .

Proposition (Schmets, Valdivia 1991)

Let $\alpha > 1$. The set of functions of $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$ which are nowhere in $\mathcal{E}_{\{(k!)^{\beta}\}}$ for every $\beta \in (1, \alpha)$ is residual in $\mathcal{E}_{((k!)^{\alpha})}(\mathbb{R})$.

ヘロト ヘアト ヘビト ヘ

More with weight functions

Definition

A function $\omega : [0, +\infty[\rightarrow [0, +\infty[$ is called a weight function if it is continuous, increasing and satisfies $\omega(0) = 0$ as well as the following conditions

(a) There exists $L \ge 1$ such that $\omega(2t) \le L\omega(t) + L, \ t \ge 0$,

(
$$\beta$$
) $\int_{1}^{+\infty} \frac{\omega(t)}{t^2} dt < +\infty,$
(γ) $\log(t) = o(\omega(t))$) as t tends to infinity,

(δ) $\varphi_{\omega}: t \mapsto \omega(e^t)$ is convex on $[0, +\infty[$.

The Young conjugate of φ_{ω} is defined by

$$\varphi_{\omega}^*(x) := \sup\{xy - \varphi_{\omega}(y) : y > 0\}, \quad x \ge 0.$$

Examples.

$$\begin{split} &\omega(t)=t\log(1+t)^{-\alpha},\,\alpha>1\\ &\omega(t)=t^{\alpha},\,0<\alpha<1 \text{ (Gevrey classes)} \end{split}$$

For a compact subset K of \mathbb{R}^n and $m \in \mathbb{N}$, we define the space $\mathcal{E}^m_{\omega}(K)$ as the space of functions $f \in \mathcal{E}(K)$ such that

$$||f||_{K,m} := \sup_{\alpha \in \mathbb{N}_0^n} \sup_{x \in K} |D^{\alpha} f(x)| \exp\left(-\frac{1}{m}\varphi_{\omega}^*(m|\alpha|)\right) < +\infty.$$

・ロト ・ 日 ・ ・ ヨ ・ ・

For a compact subset K of \mathbb{R}^n and $m \in \mathbb{N}$, we define the space $\mathcal{E}^m_{\omega}(K)$ as the space of functions $f \in \mathcal{E}(K)$ such that

$$||f||_{K,m} := \sup_{\alpha \in \mathbb{N}_0^n} \sup_{x \in K} |D^{\alpha} f(x)| \exp\left(-\frac{1}{m}\varphi_{\omega}^*(m|\alpha|)\right) < +\infty.$$

Definition

If ω is a weight function and if Ω is an open subset of \mathbb{R}^n , we define the space $\mathcal{E}_{\{\omega\}}(\Omega)$ of ω -ultradifferentiable functions of Roumieu type on Ω by

 $\mathcal{E}_{\{\omega\}}(\Omega) := \left\{ f \in \mathcal{E}(\Omega) : \forall K \subset \Omega \text{ compact } \exists m \in \mathbb{N} \text{ such that } \|f\|_{K,m} < +\infty \right\}.$

Definition

If ω is a weight function and if Ω is an open subset of \mathbb{R}^n , the space $\mathcal{E}_{(\omega)}(\Omega)$ of ω -ultradifferentiable functions of Beurling type on Ω is defined by

 $\mathcal{E}_{(\omega)}(\Omega) := \left\{ f \in \mathcal{E}(\Omega) : \forall K \subset \Omega \text{ compact }, \forall m \in \mathbb{N}, \ p_{K,m}(f) < +\infty \right\},\$

where for every compact subset K of \mathbb{R}^n and every $m \in \mathbb{N}$

$$p_{K,m}(f) := \sup_{\alpha \in \mathbb{N}_0^n} \sup_{x \in K} |D^{\alpha} f(x)| \exp\left(-m\varphi_{\omega}^*\left(\frac{|\alpha|}{m}\right)\right).$$

We endow the space $\mathcal{E}_{(\omega)}(\Omega)$ with its natural Fréchet space topology.

Given two weight functions ω and σ , we write

$$\omega \lhd \sigma \Longleftrightarrow \sigma(t) = o(\omega(t)) \text{ as } t \to +\infty.$$

Result

Let ω and σ be two weight functions such that $\omega \lhd \sigma$. If Ω is a convex open subset of \mathbb{R}^n , then $\mathcal{E}_{\{\omega\}}(\Omega)$ is strictly included in $\mathcal{E}_{(\sigma)}(\Omega)$.

Result

Let ω and σ be two weight functions such that $\omega \triangleleft \sigma$. The set of functions of $\mathcal{E}_{(\sigma)}(\mathbb{R}^n)$ which are nowhere in $\mathcal{E}_{\{\omega\}}$ is dense-lineable in $\mathcal{E}_{(\sigma)}(\mathbb{R}^n)$.

・ロット (雪) マイロッ