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Introduction.

(Whitney) if d > 2, there exists v : RY — R ¢!
and ~ : [0,1] — RY continuous such that

u(*y(O)) o= u(*y(l)) and Du(*y(t)) = 0 for all t € [0, 1].
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Introduction.

(Whitney) if d > 2, there exists u : R¢ - R ¢!
and ~ : [0,1] — RY continuous such that

u(*y(O)) o= u(*y(l)) and Du('y(t)) = 0 for all t € [0, 1].

Buczolich : If d > 2, Ju : RY — R differentiable at each
point, such that Du(0) =0 and |[|Du(z)||>1 a. e.

Deville-Matheron : If d > 2 and €2 is an open bounded subset
of R?, Ju : RY — R differentiable at each point, such that
u(r) =0ifz ¢ Q2 and ||Du(z)||=1 a.e.on <,

Moreover if e >0 and a € R?, ||a|]| = 1 are fixed,
|Du(x) —al| < e or ||Du(x) +al]| <e a. e. on Q.

The function u(xz) = d(x,092) is the viscosity solution of
|Du(x)|| = 1 on 2 with the boundary condition u(z) = 0
if x € 0L2, but is not differentiable on (2.
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Construction of u : R — R differentiable at each point, such
that u(z) =0siz ¢ 2 and || Du(z)||=1 a.e. on Q.
Lemma. Let a € RN\{0}, Q be a cube of R?, and ¢ > 0.
Then, Ju : R?Y — R bounded, of class C®, such that :

(2) v =0 in a neighbourhood of 9Q and ||ullec < €.

(0) A({z € Qi Du(z) = —a or Du(z) = a}) > (1 - )Au(Q).

(c) Du=v+w with |[wl]|eo < €,
{v(x); v € Q} C [—a,a] and v piecewise constant on Q.
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Construction of u : R? — R differentiable at each point, such
that u(z) =0siz ¢ Q2 and ||Du(z)]|=1 a.e. on Q.

Lemma. Let a € RN\{0}, Q be a cube of R% and ¢ > 0.
Then, Ju : R?Y — R bounded, of class C>®, such that :

(a) v =0 in a neighbourhood of 9Q and ||ul|c < €.

(b) Mg({z € Qi Du(a) = —a or Du(z) = a}) > (1~ £)Aa(Q).
(¢) Du=v—+w with ||wl||eo < €,

{v(z); x € Q} C [—a,a] and v piecewise constant on Q.

For each n, Q. is a “partition” of [0, 1]¢ into cubes and Qn+1
is a refinement of 9.

Up € COO(Rd), such that VQ € Qn, un|g defined using the
lemma, with a = a(Q) et e = &, to be chosen.

©.@)
solution : u = ) up
n=0



Differentiability criterium.
X, Y Banach spaces, un: X — Y, n>1, C! such that :

(1) For all z € X, <Z Dun(az)) converges.
(2) (Dun) converges uniformly to O.
(3) [[un+1lloo = o(flunlloo)-
n
(4) n||_>moo osc(kgl Duy, ||un_|_1||oo) — 0.

@)
Then u ;= > wun is well defined, everywhere differentiable,
n=1

©.@)
and Du(z) = > Dup(x) for all x € X.
1

n=

Recall 1 osc(£,6) := sup {|If (@) — fW)I]; [lz -yl < 5}.

How to ensure condition (1) together with the fact that
@)
|Du(x)|| = || > Dun(zx)|| =1 for almost every z € Q7

n=1



Differentiability criterium.
X, Y Banach spaces, up : X =Y, n>1, C! such that :

(1) For all z € X, (Z Dun(az)) converges.
(2) (Dun) converges uniformly to O.

(3) [[un+t1lloo = o(flunlloo)-

(4) lim osc(kzi:l Duy,, ||un_|_1||oo) = 0.

n—oo

©.@)
Then v ;= > un is well defined, everywhere differentiable,
n=1

©.@)
and Du(x) = . Dup(x) for all z € X.
1

n=—

Theorem : 3t : RY — S, such that if {an;n € N} C R? is a
bounded sequence satisfying (t(an),a,4+1 — an) > 0 for all n,
then (an) converges.



This last theorem involves a monotony condition.

So we are led to the following question :

Is it possible to extend the assertion
Each non increasing bounded below sequence converges
in @ Banach space setting 7

Yes if X has the Radon-Nikodym property.

Theorem : 3t : R? — S, such that if {an;n € N} C R? is a
bounded sequence satisfying (t(an),a,4+1 —an) > 0 for all n,
then (an) converges.



T he Radon-Nikodym property.

Definition. Let X be a Banach space. X has the Radon-
Nikodym property if, whenever C' is a closed convex bounded
subset of X and n > 0, there exists g € X™ and c € R such that

CNn{g<ct#0 and diam(Cﬁ{g<c}) <e.

Examples. X reflexive or X separable dual space
= X has RNP.

In particular, LP spaces, (1 < p < 4+0o0) and ¢! have RNP.

But L1([0,1]) and C(K) spaces (K infinite compact) fail RNP.



Known characterizations.
Theorem. Let X be a Banach space. T.F.A.E. :
(1) X has the Radon-Nikodym property.

(2) Each X-valued measure on [0, 1] which is absolutly continuous
w. r. t. Lebesgue measure has a density.

(3) L([0,1],X)* = L*°([0, 1], X*).

(4) If (Xy) is a martingale with values in By, then (X,) converges
a. s..

(5) If f: R — X is Lipschitz, then f is differentiable a. e.
(at least at one point).

(6) If C is a closed convex bounded subset of X, and if f:C — R
is £.s.c. and bounded below, then
{g € X*; f+ g has a strong min. on C} is dense in X*.



(1)

(2)

The main result (with O. Madiedo).

Theorem : If X is a Banach space, T.F.A.E. :
X has the Radon-Nikodym property.

For all f &€ Sx+ and all € > 0,

there exists t : X — Sx« N B(f,¢)

such that for all sequence (xp) in X,

if (f(zn) —ellznll) is bounded below
and if (t(xn),x,41 —2n) < 0 for all n,

then (z,) converges.

This result is non trivial even when dim(X) = 2.



Interpretation with games.

If pe R, we define Ap ={x € X : f(z) > ¢||z|| + p}.

Player 1 chooses z; € Ay. (f(zn) — ellznl|) bounded below
Player 2 chooses slices Sy, of Ayp.

Player 1 start the game and chooses z1 € A\p.



Interpretation with games.

Player 2 then chooses a slice S1 ={x € N\p; f1(z) < f1(x1)}.

t(x1) = f1



Interpretation with games.

Player 1 chooses a point x» € 51.

Hypothesis (t(xn),xp4+1 —xn) <0



Interpretation with games.

Player 2 chooses a slice Sy = {x € NAp; fo(z) < fo(x2)}.

The slice S5 is not necessarily included in S;.



Interpretation with games.

Player 1 chooses a point z3 € 5.



Interpretation with games.

And so on. Player 1 constructs a sequence (xp) in N\p C X.
And player 2 constructs a sequence (f) in X*,
defining slices S, of Ap.

Player 1 is a thief and player 2 is a policeman.
Player 2 (the policeman) wishes that the sequence (x,) converges.



Interpretation with games.

Player 2 (the thief) wishes to escape.

i. e. player 2 wins if the sequence (x,) diverges.



Interpretation with games.

A winning tactic for the policeman is a choice of slices depending
only on the last position of the thief, that guaranties that the se-
quence (xn) converges.



Interpretation with games.

The policeman has a winning tactic if and only if the space X where
the thief lives has RNP.



The constant tactic ¢(z) = f for all z € X
IS not a winning tactic for the policeman.

A policeman may think that choosing t(x) = f is a winning tactic.
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IS not a winning tactic for the policeman.

Because this tactic garanties that 5,41 C Sn.
The zone where the thief is allowed to move decreases at each step.
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But the thief can move alternatively to the right and to the left
(if dim(X) > 2).
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The constant tactic ¢(x) = f for all x € X
IS not a winning tactic for the policeman.
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And the sequence (xz,) diverges if (f(a:n) —p) does not go to 0.



The constant tactic ¢(z) = f for all z € X
IS not a winning tactic for the policeman.

And the sequence (z,) diverges if (f(;r;n) —p> does not go to 0.



Choosing t(z,) such that the sequence of
corresponding slices S, is decreasing is not a
winning tactic for the policeman.




Related results.

Recall (Deville-Madiedo) :

If X has RNP, then for each f € Sx+ and each € > 0, there
exists t : X — Sx=N B(f,e) such that for all (xn) in X, if
(f(:cn) —a||a;n|\) is bounded below and if (t(zn),rp4+1—2n) <0
for all n, then (x,) converges.

Prochazka : If X is a Banach space with RNP and if C is a
closed convex bounded subset of X, there exists to: C — Sx=
such that for any sequence (zn) C C, if (tc(zn), zp4+1—2n) <0
for all n, then (x,) converges.

Zeleny : If dim(X) < 400, then t can be chosen continuous.

First results : Maly-Zeleny, Deville-Matheron.



Proof : n-tactics.
FixpeZ and n>0, and let \p ={z € X : f(z) > ¢||z| + p}.

We construct t on Ap\A, 41 such that whenever (zn) C Ap\Ap41,
(t(xn),xp41 —2xn) <0 foralln = (xzn) is n-Cauchy.



Proof : n-tactics.
FixpeZ and n>0, and let \p ={z € X : f(z) > ¢||z| + p}.

We construct t on Ap\A, 41 such that whenever (zn) C Ap\N\p41,
(t(xn),xp41 —2xn) <0 foralln = (xn) is n-Cauchy.

Let f1 € B(f,e) and ¢; € R so that C1 = ApN{f1 <eci1}#0,
diam(C1) <n, and A,1 1 NCy = 0. If € Cq, t(x) = f1.



Proof : n-tactics.
FixpeZ and n>0, and let \p ={z € X : f(z) > ¢||z| + p}.

We construct t on Ap\A, 41 such that whenever (zn) C Ap\Ap41,
(t(xn),xp41 —2xn) <0 foralln = (xzn) is n-Cauchy.

Let f> € B(f,e) and ¢» € R such that Cy, = (/\p\Cl) N{fo <cp} # 0,
diam(C2) <n, and A, 1 NCr = 1. If v € Cy, t(x) = for.



Proof : n-tactics.
FixpeZand n>0, and let A\p ={z € X : f(z) > ¢||z| + p}.

We construct t on Ap\A, 41 such that whenever (zn) C Ap\Ap41,
(t(xn),xp41 —xn) <0 foralln = (xn) is n-Cauchy.

By transfinite induction, let fo € B(f,¢), ca € R s. t. the associated
convex sets Cq form a partition of Ap\A,41.  If z € Co, t(z) = fo.



Proof : n-tactics.
If x € Ca, t(ﬂf) = fOé-

If (xn) C /\p\/\p_|_1 satisfies (t(xn),z,4+1 —xn) < 0 for all n,
Jap such that x, € Cq,,.



Proof : n-tactics.
If x € Ca, t(ﬂf) = fOé-

If (xn) C /\p\/\p_|_1 satisfies (t(xn),z,4+1 —xn) < 0 for all n,
Jap such that x, € Cq,,. Clam : a,41 <an for all n.



Proof : n-tactics.
If x € Ca, t(ﬂf) = fOé-

If (xn) C /\p\/\p_|_1 satisfies (t(xn),z,4+1 —xn) < 0 for all n,
Jap such that x, € Cq,,. Clam : a,41 <an for all n.

There exists ng such that for all n > ng, an = ang.
So zp € Cay,, for all n > ng and diam(Cng) <n @ (zn) is n-Cauchy.



Proof : multi-n-tactics.

Representation of Cy, {fa = ca} in red.

If € Cq, t(x) = fo, t is an p-tactic.



Proof : multi-n-tactics.

Define T'(x) = E(fa,é(a;)> for x € Cl.

Any selection t of T is a n-tactic if 6(x) > 0 is small enough.



Proof : Construction of t.

We construct multi-tactics Ty, on Ap\A,4 1 so that :

o Vx € /\p\/\p—l—l and Vk, Tk_|_1($) C Tk(x) = F(fk,x,ék(az)) NSy,
e If ¢t is a selection of T}, t is a n,-tactic, where (n;) | O.
o diam(T;(x)) — O.

N T.(z) = {t(:r;)}. We do this for all p.



Proof : Construction of t.

We construct multi-tactics Ty, on Ap\A,4 1 so that :

o Vx € /\P\/\p-l-l and Vk, Tk_|_1(:c) C Tk(:c) = E(fk:,:ca5k(x)) M SX*,
e If ¢t is a selection of T}, t is a n,-tactic, where (n;) | O.
o diam (T (x)) — O.

N T.(z) = {t(:r;)}. We do this for all p.

Assume that (f(:r;n) — s||a:n||) is bounded below
and that (t(zn),zp4+1 — xn) < 0 for all n.

If n € Np,\\p,+1,  Ppn4+1 < pn and (pn) is bounded below :
pn = png for all n > ng.

T he sequence (xn)nz,ﬂo is n,, Cauchy for all k£, hence converges.



Application to differentiability.

Let Q be open in R? or in a Riemannian variety (M, g) of di-
mension d > 2. Let F : Q x R% (or TM) — R continuous.

Definition. v : 2 — R is an almost classical solution of
F(x,Du(xz)) = 0 if v is diff. at each point of 2,and if :

1) F(x,Du(x)) =0 a. e.

2) F(x,Du(x)) <0 for all z € 2.
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Theorem. (with J. Jaramillo) Suppose that
A) Jug : Q2 — R CL, so that F(z, Dug(z)) < 0 for all z € Q.
B) dp: Q2 — (0,400) locally bounded, such that
{v; F(x,v) <0} C B(0, p(x)) for all z € Q.
Then F(x,Du(x)) = 0 has an almost classical solution.



Application to differentiability.

Let Q be open in R? or in a Riemannian variety (M, g) of di-
mension d > 2. Let F : Q x R% (or TM) — R continuous.

Definition. v : 2 — R is an almost classical solution of
F(x,Du(xz)) = 0 if v is diff. at each point of 2,and if :

1) F(x,Du(x)) =0 a. e.

2) F(x,Du(x)) <0 for all z € 2.

Theorem. (with J. Jaramillo) Suppose that
A) Jug : Q2 — R CL, so that F(z, Dug(z)) < 0 for all z € Q.
B) dp: Q2 — (0,400) locally bounded, such that
{v; F(x,v) <0} C B(0, p(x)) for all z € Q.
Then F(x,Du(x)) = 0 has an almost classical solution.

Example. If d > 2, du: sS4 s R differentiable at each point,
so that ||Du(x)|| =1 a. e.

Mountain smooth and steep almost everywhere!



