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Introduction.

(Whitney) if d � 2, there exists u : Rd ! R C1
and � : [0,1] ! Rd continuous such that
u

⇣

�(0)
⌘

6= u

⇣

�(1)
⌘

and Du

⇣

�(t)
⌘

= 0 for all t 2 [0,1].

Buczolich : If d � 2, 9u : Rd ! R di↵erentiable at each point,
such that Du(0) = 0 and kDu(x)k � 1 a. e.

Deville-Matheron : If d � 2 and ⌦ is an open bounded subset
of Rd, 9u : Rd ! R di↵erentiable at each point, such that
u(x) = 0 if x /2 ⌦ and kDu(x)k = 1 a. e. on ⌦

La fonction u(x) = d(x, @⌦) est la solution de viscosité de
kDu(x)k = 1 sur ⌦ avec la condition au bord u(x) = 0 si
x 2 @⌦, mais n’est pas di↵érentiable sur ⌦.
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Moreover if " > 0 and a 2 Rd, kak = 1 are fixed,
kDu(x)� ak < " or kDu(x) + ak < " a. e. on ⌦.

The function u(x) = d(x, @⌦) is the viscosity solution of
kDu(x)k = 1 on ⌦ with the boundary condition u(x) = 0
if x 2 @⌦, but is not di↵erentiable on ⌦.



 



 



Construction of u : Rd ! R di↵erentiable at each point, such

that u(x) = 0 si x /2 ⌦ and kDu(x)k = 1 a. e. on ⌦.

Lemma. Let a 2 Rd\{0}, Q be a cube of Rd, and " > 0.

Then, 9u : Rd ! R bounded, of class C1, such that :

(a) u ⌘ 0 in a neighbourhood of @Q and kuk1  ".

(b) �

d

⇣

{x 2 Q; Du(x) = �a or Du(x) = a}
⌘

� (1� ")�
d

(Q).

(c) Du = v + w with kwk1 < ",

{v(x); x 2 Q} ⇢ [�a, a] and v piecewise constant on Q.



 



 



 



Construction of u : Rd ! R di↵erentiable at each point, such

that u(x) = 0 si x /2 ⌦ and kDu(x)k = 1 a. e. on ⌦.

Lemma. Let a 2 Rd\{0}, Q be a cube of Rd, and " > 0.

Then, 9u : Rd ! R bounded, of class C1, such that :

(a) u ⌘ 0 in a neighbourhood of @Q and kuk1  ".

(b) �

d

⇣

{x 2 Q; Du(x) = �a or Du(x) = a}
⌘

� (1� ")�
d

(Q).

(c) Du = v + w with kwk1 < ",

{v(x); x 2 Q} ⇢ [�a, a] and v piecewise constant on Q.

For each n, Q
n

is a “partition” of [0,1]d into cubes and Q
n+1

is a refinement of Q
n

.

u

n

2 C1(Rd), such that 8Q 2 Q
n

, u

n|Q defined using the

lemma, with a = a(Q) et " = "

n

to be chosen.

solution : u =
1
X

n=0

u

n



Di↵erentiability criterium.

X, Y Banach spaces, u

n

: X ! Y , n � 1, C1 such that :

(1) For all x 2 X,
⇣

P

Du

n

(x)
⌘

converges.

(2)
⇣

Du

n

⌘

converges uniformly to 0.

(3) ku
n+1k1 = o(ku

n

k1).

(4) lim
n!1 osc

⇣

n

P

k=1
Du

k

, ku
n+1k1

⌘

= 0.

Then u :=
1
P

n=1
u

n

is well defined, everywhere di↵erentiable,

and Du(x) =
1
P

n=1
Du

n

(x) for all x 2 X.

Recall : osc(f, �) := sup
n

||f(x)� f(y)||; ||x� y|| < �

o

.

How to ensure condition (1) together with the fact that

||Du(x)|| = ||
1
P

n=1
Du

n

(x)|| = 1 for almost every x 2 ⌦ ?
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X, Y Banach spaces, u

n

: X ! Y , n � 1, C1 such that :

(1) For all x 2 X,
⇣

P

Du

n

(x)
⌘

converges.

(2)
⇣

Du

n

⌘

converges uniformly to 0.

(3) ku
n+1k1 = o(ku

n

k1).

(4) lim
n!1 osc

⇣

n

P

k=1
Du

k

, ku
n+1k1

⌘

= 0.

Then u :=
1
P

n=1
u

n

is well defined, everywhere di↵erentiable,

and Du(x) =
1
P

n=1
Du

n

(x) for all x 2 X.

Theorem : 9t : Rd ! SRd

such that if {a
n

;n 2 N} ⇢ Rd is a

bounded sequence satisfying ht(a
n

), a
n+1 � a

n

i � 0 for all n,

then (a
n

) converges.



This last theorem involves a monotony condition.

So we are led to the following question :

Is it possible to extend the assertion

Each non increasing bounded below sequence converges

in a Banach space setting ?

Yes if X has the Radon-Nikodym property.

Theorem : 9t : Rd ! SRd

such that if {a
n

;n 2 N} ⇢ Rd is a

bounded sequence satisfying ht(a
n

), a
n+1 � a

n

i � 0 for all n,

then (a
n

) converges.



The Radon-Nikodym property.

Definition. Let X be a Banach space. X has the Radon-

Nikodym property if, whenever C is a closed convex bounded

subset of X and ⌘ > 0, there exists g 2 X

⇤ and c 2 R such that

C \ {g < c} 6= ; and diam

⇣

C \ {g < c}
⌘

< ".

Examples. X reflexive or X separable dual space

) X has RNP.

In particular, L

p spaces, (1 < p < +1) and `

1 have RNP.

But L

1([0,1]) and C(K) spaces (K infinite compact) fail RNP.



Known characterizations.

Theorem. Let X be a Banach space. T.F.A.E. :

(1) X has the Radon-Nikodym property.

(2) Each X-valued measure on [0,1] which is absolutly continuous
w. r. t. Lebesgue measure has a density.

(3) L

1([0,1], X)⇤ = L

1([0,1], X⇤).

(4) If (X
n

) is a martingale with values in B

X

, then (X
n

) converges
a. s..

(5) If f : R ! X is Lipschitz, then f is di↵erentiable a. e.
(at least at one point).

(6) If C is a closed convex bounded subset of X, and if f : C ! R
is `.s.c. and bounded below, then
{g 2 X

⇤; f + g has a strong min. on C} is dense in X

⇤.



The main result (with O. Madiedo).

Theorem : If X is a Banach space, T.F.A.E. :

(1) X has the Radon-Nikodym property.

(2) For all f 2 S

X

⇤ and all " > 0,

there exists t : X ! S

X

⇤ \B(f, ")

such that for all sequence (x
n

) in X,

if
⇣

f(x
n

)� "kx
n

k
⌘

is bounded below

and if h t(x
n

), x
n+1 � x

n

i  0 for all n,

then (x
n

) converges.

This result is non trivial even when dim(X) = 2.



Interpretation with games.

If p 2 R, we define ⇤
p

= {x 2 X : f(x) � "kxk+ p}.

Player 1 chooses x

n

2 ⇤
p

.
⇣

f(x
n

)� "kx
n

k
⌘

bounded below
Player 2 chooses slices S

n

of ⇤
p

.
Player 1 start the game and chooses x1 2 ⇤

p

.



Interpretation with games.

Player 2 then chooses a slice S1 = {x 2 ⇤
p

; f1(x)  f1(x1)}.

t(x1) = f1

rien



Interpretation with games.

Player 1 chooses a point x2 2 S1.

Hypothesis h t(x
n

), x
n+1 � x

n

i  0

rien



Interpretation with games.

Player 2 chooses a slice S2 = {x 2 ⇤
p

; f2(x)  f2(x2)}.

The slice S2 is not necessarily included in S1.

rien



Interpretation with games.

Player 1 chooses a point x3 2 S2.

rien

rien



Interpretation with games.

And so on. Player 1 constructs a sequence (x
n

) in ⇤
p

⇢ X.
And player 2 constructs a sequence (f

n

) in X

⇤,
defining slices S

n

of ⇤
p

.

Player 1 is a thief and player 2 is a policeman.
Player 2 (the policeman) wishes that the sequence (x

n

) converges.



Interpretation with games.

Player 2 (the thief) wishes to escape.

i. e. player 2 wins if the sequence (x
n

) diverges.

rien



Interpretation with games.

A winning tactic for the policeman is a choice of slices depending

only on the last position of the thief, that guaranties that the se-

quence (x
n

) converges.

rien



Interpretation with games.

The policeman has a winning tactic if and only if the space X where

the thief lives has RNP.

rien

rien



The constant tactic t(x) = f for all x 2 X

is not a winning tactic for the policeman.

A policeman may think that choosing t(x) = f is a winning tactic.
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n+1 ⇢ S
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.

The zone where the thief is allowed to move decreases at each step.
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n

) diverges if
⇣

f(x
n

)� p

⌘

does not go to 0.

rien



The constant tactic t(x) = f for all x 2 X

is not a winning tactic for the policeman.

And the sequence (x
n

) diverges if
⇣

f(x
n

)� p

⌘

does not go to 0.

rien



Choosing t(x
n

) such that the sequence of
corresponding slices S

n

is decreasing is not a
winning tactic for the policeman.



Related results.

Recall (Deville-Madiedo) :
If X has RNP, then for each f 2 S

X

⇤ and each " > 0, there

exists t : X ! S

X

⇤ \ B(f, ") such that for all (x
n

) in X, if
⇣

f(x
n

)�"kx
n

k
⌘

is bounded below and if h t(x
n

), x
n+1�x

n

i  0

for all n, then (x
n

) converges.

Prochazka : If X is a Banach space with RNP and if C is a

closed convex bounded subset of X, there exists t

C

: C ! S

X

⇤

such that for any sequence (x
n

) ⇢ C, if h t
C

(x
n

), x
n+1�x

n

i  0

for all n, then (x
n

) converges.

Zeleny : If dim(X) < +1, then t can be chosen continuous.

First results : Maly-Zeleny, Deville-Matheron.



Proof : ⌘-tactics.

Fix p 2 Z and ⌘ > 0, and let ⇤
p

= {x 2 X : f(x) � "kxk+ p}.

We construct t on ⇤
p

\⇤
p+1 such that whenever (x

n

) ⇢ ⇤
p

\⇤
p+1,

h t(x
n

), x
n+1 � x

n

i  0 for all n ) (x
n

) is ⌘-Cauchy.

Soit f1 2 B(f, ") et c1 2 R tels que C1 = ⇤
p

\ {f1 < c1} 6= ;,
diam(C1) < ⌘, et ⇤

p+1 \ C1 = ;. Si x 2 C1, t(x) = f1.
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) ⇢ ⇤
p

\⇤
p+1,

h t(x
n

), x
n+1 � x
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i  0 for all n ) (x
n

) is ⌘-Cauchy.

Let f2 2 B(f, ") and c2 2 R such that C2 =
⇣

⇤
p

\C1

⌘

\ {f2 < c2} 6= ;,
diam(C2) < ⌘, and ⇤

p+1 \ C2 = ;. If x 2 C2, t(x) = f2.



Proof : ⌘-tactics.

Fix p 2 Z and ⌘ > 0, and let ⇤
p

= {x 2 X : f(x) � "kxk+ p}.

We construct t on ⇤
p

\⇤
p+1 such that whenever (x

n

) ⇢ ⇤
p

\⇤
p+1,

h t(x
n

), x
n+1 � x

n

i  0 for all n ) (x
n

) is ⌘-Cauchy.

By transfinite induction, let f

↵

2 B(f, "), c

↵

2 R s. t. the associated
convex sets C

↵

form a partition of ⇤
p

\⇤
p+1. If x 2 C

↵

, t(x) = f

↵

.



Proof : ⌘-tactics.

If x 2 C

↵

, t(x) = f

↵

.

If (x
n

) ⇢ ⇤
p

\⇤
p+1 satisfies h t(x

n

), x
n+1 � x

n

i  0 for all n,
9↵

n

such that x

n

2 C

↵

n

. Claim : ↵

n+1  ↵

n

for all n.

There exists n0 such that for all n � n0, ↵

n

= ↵

n0.
Therefore x

n

2 C

↵

n0
for all n � n0 and diam(C

n0) < ⌘.
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Proof : ⌘-tactics.

If x 2 C

↵

, t(x) = f

↵

.

If (x
n

) ⇢ ⇤
p

\⇤
p+1 satisfies h t(x

n

), x
n+1 � x
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i  0 for all n,
9↵

n

such that x

n

2 C

↵

n

. Claim : ↵

n+1  ↵

n

for all n.

There exists n0 such that for all n � n0, ↵

n

= ↵

n0.
So x

n

2 C

↵

n0
for all n � n0 and diam(C

n0) < ⌘ : (x
n

) is ⌘-Cauchy.



Proof : multi-⌘-tactics.

Representation of C

↵

, {f
↵

= c

↵

} in red.

If x 2 C

↵

, t(x) = f

↵

, t is an ⌘-tactic.



Proof : multi-⌘-tactics.

Define T (x) = B

⇣

f

↵

, �(x)
⌘

for x 2 C

↵

.

Any selection t of T is a ⌘-tactic if �(x) > 0 is small enough.



Proof : Construction of t.

We construct multi-tactics T

k

on ⇤
p

\⇤
p+1 so that :

• 8x 2 ⇤
p

\⇤
p+1 and 8k, T

k+1(x) ⇢ T

k

(x) = B(f
k,x

, �

k

(x)) \ S

X

⇤,

• If t is a selection of T

k

, t is a ⌘

k

-tactic, where (⌘
k

) # 0.

• diam(T
k

(x)) ! 0.

T

T

k

(x) =
n

t(x)
o

. We do this for all p.

Assume
⇣

f(x
n

)� "kx
n

k
⌘

is bounded below

and h t(x
n

), x
n+1 � x

n

i  0 for all n.

If x

n

2 ⇤
p

n

\⇤
p

n

+1, p

n+1  p

n

and (p
n

) is bounded below :

p

n

= p

n0 for all n � n0.

The sequence (x
n

)
n�n0

is ⌘

k

Cauchy for each k, hence conver-

ging.



Proof : Construction of t.

We construct multi-tactics T

k

on ⇤
p
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• 8x 2 ⇤
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k
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k

(x)) \ S

X
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• If t is a selection of T

k

, t is a ⌘

k

-tactic, where (⌘
k

) # 0.

• diam(T
k

(x)) ! 0.

T

T

k

(x) =
n

t(x)
o

. We do this for all p.

Assume that
⇣

f(x
n

)� "kx
n

k
⌘

is bounded below

and that h t(x
n

), x
n+1 � x

n

i  0 for all n.

If x

n

2 ⇤
p

n

\⇤
p

n

+1, p

n+1  p

n

and (p
n

) is bounded below :

p

n

= p

n0 for all n � n0.

The sequence (x
n

)
n�n0

is ⌘

k

Cauchy for all k, hence converges.



Application to di↵erentiability.

Let ⌦ be open in Rd or in a Riemannian variety (M, g) of di-
mension d � 2. Let F : ⌦⇥ Rd (or TM) ! R continuous.

Definition. u : ⌦ ! R is an almost classical solution of
F (x,Du(x)) = 0 if u is di↵. at each point of ⌦,and if :
1) F (x,Du(x)) = 0 a. e.
2) F (x,Du(x))  0 for all x 2 ⌦.

Theorem. (with J. Jaramillo) Suppose that
A) 9u0 : ⌦ ! R C1, so that F (x,Du0(x))  0 for all x 2 ⌦.
B) 9 ⇢ : ⌦ ! (0,+1) locally bounded, such that

{v; F (x, v)  0} ⇢ B(0, ⇢(x)) for all x 2 ⌦.
Then F (x,Du(x)) = 0 has an almost classical solution.

Example. If d � 2, 9u : Sd ! R di↵erentiable at each point,
so that kDu(x)k = 1 a. e.

Mountain smooth and steep almost everywhere !
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