# A CHARACTERIZATION OF THE RADON-NIKODYM PROPERTY. 

# APPLICATION TO THE CONSTRUCTION OF ALMOST CLASSICAL SOLUTIONS OF HAMILTON-JACOBI EQUATIONS. 

Robert Deville
Université de Bordeaux.

Esneux, 28/05/2015.

## Introduction.

(Whitney) if $d \geq 2$, there exists $u: \mathbb{R}^{d} \rightarrow \mathbb{R} \mathcal{C}^{1}$ and $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ continuous such that $u(\gamma(0)) \neq u(\gamma(1))$ and $D u(\gamma(t))=0$ for all $t \in[0,1]$.

## Introduction.

(Whitney) if $d \geq 2$, there exists $u: \mathbb{R}^{d} \rightarrow \mathbb{R} \mathcal{C}^{1}$ and $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ continuous such that $u(\gamma(0)) \neq u(\gamma(1))$ and $D u(\gamma(t))=0$ for all $t \in[0,1]$.

Buczolich : If $d \geq 2, \exists u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ differentiable at each point, such that $D u(0)=0$ and $\|D u(x)\| \geq 1$ a. e.

## Introduction.

(Whitney) if $d \geq 2$, there exists $u: \mathbb{R}^{d} \rightarrow \mathbb{R} \mathcal{C}^{1}$ and $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ continuous such that $u(\gamma(0)) \neq u(\gamma(1))$ and $D u(\gamma(t))=0$ for all $t \in[0,1]$.

Buczolich : If $d \geq 2, \exists u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ differentiable at each point, such that $D u(0)=0$ and $\|D u(x)\| \geq 1$ a. e.

Deville-Matheron : If $d \geq 2$ and $\Omega$ is an open bounded subset of $\mathbb{R}^{d}, \exists u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ differentiable at each point, such that $u(x)=0$ if $x \notin \Omega$ and $\|D u(x)\|=1$ a. e. on $\Omega$,

Moreover if $\varepsilon>0$ and $a \in \mathbb{R}^{d},\|a\|=1$ are fixed, $\|D u(x)-a\|<\varepsilon$ or $\|D u(x)+a\|<\varepsilon$ a. e. on $\Omega$.

## Introduction.

(Whitney) if $d \geq 2$, there exists $u: \mathbb{R}^{d} \rightarrow \mathbb{R} \mathcal{C}^{1}$ and $\gamma:[0,1] \rightarrow \mathbb{R}^{d}$ continuous such that $u(\gamma(0)) \neq u(\gamma(1))$ and $D u(\gamma(t))=0$ for all $t \in[0,1]$.

Buczolich : If $d \geq 2, \exists u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ differentiable at each point, such that $D u(0)=0$ and $\|D u(x)\| \geq 1$ a. e.

Deville-Matheron : If $d \geq 2$ and $\Omega$ is an open bounded subset of $\mathbb{R}^{d}, \exists u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ differentiable at each point, such that $u(x)=0$ if $x \notin \Omega$ and $\|D u(x)\|=1$ a. e. on $\Omega$,

Moreover if $\varepsilon>0$ and $a \in \mathbb{R}^{d},\|a\|=1$ are fixed, $\|D u(x)-a\|<\varepsilon$ or $\|D u(x)+a\|<\varepsilon$ a. e. on $\Omega$.

The function $u(x)=d(x, \partial \Omega)$ is the viscosity solution of $\|D u(x)\|=1$ on $\Omega$ with the boundary condition $u(x)=0$ if $x \in \partial \Omega$, but is not differentiable on $\Omega$.


$$
\Delta
$$

Construction of $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ differentiable at each point, such that $u(x)=0$ si $x \notin \Omega$ and $\|D u(x)\|=1$ a. e. on $\Omega$.

Lemma. Let $a \in \mathbb{R}^{d} \backslash\{0\}, Q$ be a cube of $\mathbb{R}^{d}$, and $\varepsilon>0$.

Then, $\exists u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ bounded, of class $\mathcal{C}^{\infty}$, such that :
(a) $u \equiv 0$ in a neighbourhood of $\partial Q$ and $\|u\|_{\infty} \leq \varepsilon$.
(b) $\lambda_{d}(\{x \in Q ; D u(x)=-a$ or $D u(x)=a\}) \geq(1-\varepsilon) \lambda_{d}(Q)$.
(c) $D u=v+w \quad$ with $\|w\|_{\infty}<\varepsilon$, $\{v(x) ; x \in Q\} \subset[-a, a]$ and $v$ piecewise constant on $Q$.




Construction of $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ differentiable at each point, such that $u(x)=0$ si $x \notin \Omega$ and $\|D u(x)\|=1$ a. e. on $\Omega$.

Lemma. Let $a \in \mathbb{R}^{d} \backslash\{0\}, Q$ be a cube of $\mathbb{R}^{d}$, and $\varepsilon>0$. Then, $\exists u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ bounded, of class $\mathcal{C}^{\infty}$, such that:
(a) $u \equiv 0$ in a neighbourhood of $\partial Q$ and $\|u\|_{\infty} \leq \varepsilon$.
(b) $\lambda_{d}(\{x \in Q ; D u(x)=-a$ or $D u(x)=a\}) \geq(1-\varepsilon) \lambda_{d}(Q)$.
(c) $D u=v+w \quad$ with $\|w\|_{\infty}<\varepsilon$,
$\{v(x) ; x \in Q\} \subset[-a, a]$ and $v$ piecewise constant on $Q$.
For each $n, \mathcal{Q}_{n}$ is a "partition" of $[0,1]^{d}$ into cubes and $\mathcal{Q}_{n+1}$ is a refinement of $\mathcal{Q}_{n}$.
$u_{n} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{d}\right)$, such that $\forall Q \in \mathcal{Q}_{n}, u_{n \mid Q}$ defined using the lemma, with $a=a(Q)$ et $\varepsilon=\varepsilon_{n}$ to be chosen.
solution : $u=\sum_{n=0}^{\infty} u_{n}$

## Differentiability criterium.

$X, Y$ Banach spaces, $u_{n}: X \rightarrow Y, n \geq 1, \mathcal{C}^{1}$ such that:
(1) For all $x \in X,\left(\sum D u_{n}(x)\right)$ converges.
(2) $\left(D u_{n}\right)$ converges uniformly to 0 .
(3) $\left\|u_{n+1}\right\|_{\infty}=o\left(\left\|u_{n}\right\|_{\infty}\right)$.
(4) $\lim _{n \rightarrow \infty} \operatorname{osc}\left(\sum_{k=1}^{n} D u_{k},\left\|u_{n+1}\right\|_{\infty}\right)=0$.

Then $u:=\sum_{n=1}^{\infty} u_{n}$ is well defined, everywhere differentiable,
and $D u(x)=\sum_{n=1}^{\infty} D u_{n}(x)$ for all $x \in X$.
Recall : $\quad \operatorname{osc}(f, \delta):=\sup \{\|f(x)-f(y)\| ;\|x-y\|<\delta\}$.
How to ensure condition (1) together with the fact that
$\|D u(x)\|=\left\|\sum_{n=1}^{\infty} D u_{n}(x)\right\|=1$ for almost every $x \in \Omega$ ?

## Differentiability criterium.

$X, Y$ Banach spaces, $u_{n}: X \rightarrow Y, n \geq 1, \mathcal{C}^{1}$ such that:
(1) For all $x \in X,\left(\sum D u_{n}(x)\right)$ converges.
(2) $\left(D u_{n}\right)$ converges uniformly to 0 .
(3) $\left\|u_{n+1}\right\|_{\infty}=o\left(\left\|u_{n}\right\|_{\infty}\right)$.
(4) $\lim _{n \rightarrow \infty} \operatorname{osc}\left(\sum_{k=1}^{n} D u_{k},\left\|u_{n+1}\right\|_{\infty}\right)=0$.

Then $u:=\sum_{n=1}^{\infty} u_{n}$ is well defined, everywhere differentiable, and $D u(x)=\sum_{n=1}^{\infty} D u_{n}(x)$ for all $x \in X$.

Theorem : $\exists t: \mathbb{R}^{d} \rightarrow S_{\mathbb{R}^{d}}$ such that if $\left\{a_{n} ; n \in \mathbb{N}\right\} \subset \mathbb{R}^{d}$ is a bounded sequence satisfying $\left\langle t\left(a_{n}\right), a_{n+1}-a_{n}\right\rangle \geq 0$ for all $n$, then ( $a_{n}$ ) converges.

This last theorem involves a monotony condition.

So we are led to the following question :

Is it possible to extend the assertion
Each non increasing bounded below sequence converges in a Banach space setting?

Yes if $X$ has the Radon-Nikodym property.

Theorem : $\exists t: \mathbb{R}^{d} \rightarrow S_{\mathbb{R}^{d}}$ such that if $\left\{a_{n} ; n \in \mathbb{N}\right\} \subset \mathbb{R}^{d}$ is a bounded sequence satisfying $\left\langle t\left(a_{n}\right), a_{n+1}-a_{n}\right\rangle \geq 0$ for all $n$, then $\left(a_{n}\right)$ converges.

## The Radon-Nikodym property.

Definition. Let $X$ be a Banach space. $X$ has the RadonNikodym property if, whenever $C$ is a closed convex bounded subset of $X$ and $\eta>0$, there exists $g \in X^{*}$ and $c \in \mathbb{R}$ such that

$$
C \cap\{g<c\} \neq \emptyset \quad \text { and } \quad \operatorname{diam}(C \cap\{g<c\})<\varepsilon
$$

Examples. $X$ reflexive or $X$ separable dual space $\Rightarrow X$ has RNP.

In particular, $L^{p}$ spaces, $(1<p<+\infty)$ and $\ell^{1}$ have RNP.

But $L^{1}([0,1])$ and $\mathcal{C}(K)$ spaces ( $K$ infinite compact) fail RNP.

## Known characterizations.

Theorem. Let $X$ be a Banach space. T.F.A.E. :
(1) $X$ has the Radon-Nikodym property.
(2) Each $X$-valued measure on $[0,1]$ which is absolutly continuous w. r. t. Lebesgue measure has a density.
(3) $L^{1}([0,1], X)^{*}=L^{\infty}\left([0,1], X^{*}\right)$.
(4) If ( $X_{n}$ ) is a martingale with values in $B_{X}$, then $\left(X_{n}\right)$ converges a. S..
(5) If $f: \mathbb{R} \rightarrow X$ is Lipschitz, then $f$ is differentiable a. e. (at least at one point).
(6) If $C$ is a closed convex bounded subset of $X$, and if $f: C \rightarrow \mathbb{R}$ is $\ell$.s.c. and bounded below, then $\left\{g \in X^{*} ; f+g\right.$ has a strong min. on $\left.C\right\}$ is dense in $X^{*}$.

## The main result (with O. Madiedo).

Theorem : If $X$ is a Banach space, T.F.A.E. :
(1) $X$ has the Radon-Nikodym property.
(2) For all $f \in S_{X^{*}}$ and all $\varepsilon>0$, there exists $t: X \rightarrow S_{X^{*}} \cap B(f, \varepsilon)$ such that for all sequence $\left(x_{n}\right)$ in $X$,
if $\left(f\left(x_{n}\right)-\varepsilon\left\|x_{n}\right\|\right)$ is bounded below and if $\left\langle t\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$ for all $n$, then ( $x_{n}$ ) converges.

This result is non trivial even when $\operatorname{dim}(X)=2$.

## Interpretation with games.



If $p \in \mathbb{R}$, we define $\wedge_{p}=\{x \in X: f(x) \geq \varepsilon\|x\|+p\}$.
Player 1 chooses $x_{n} \in \Lambda_{p} . \quad\left(f\left(x_{n}\right)-\varepsilon\left\|x_{n}\right\|\right)$ bounded below Player 2 chooses slices $S_{n}$ of $\Lambda_{p}$.
Player 1 start the game and chooses $x_{1} \in \Lambda_{p}$.

## Interpretation with games.



Player 2 then chooses a slice $S_{1}=\left\{x \in \wedge_{p} ; f_{1}(x) \leq f_{1}\left(x_{1}\right)\right\}$.
$t\left(x_{1}\right)=f_{1}$

## Interpretation with games.



Player 1 chooses a point $x_{2} \in S_{1}$.
Hypothesis $\left\langle t\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$

## Interpretation with games.



Player 2 chooses a slice $S_{2}=\left\{x \in \wedge_{p} ; f_{2}(x) \leq f_{2}\left(x_{2}\right)\right\}$.
The slice $S_{2}$ is not necessarily included in $S_{1}$.

## Interpretation with games.



Player 1 chooses a point $x_{3} \in S_{2}$.

## Interpretation with games.



And so on. Player 1 constructs a sequence ( $x_{n}$ ) in $\wedge_{p} \subset X$. And player 2 constructs a sequence ( $f_{n}$ ) in $X^{*}$, defining slices $S_{n}$ of $\wedge_{p}$.

Player 1 is a thief and player 2 is a policeman.
Player 2 (the policeman) wishes that the sequence $\left(x_{n}\right)$ converges.

## Interpretation with games.



Player 2 (the thief) wishes to escape.
i. e. player 2 wins if the sequence $\left(x_{n}\right)$ diverges.

## Interpretation with games.



A winning tactic for the policeman is a choice of slices depending only on the last position of the thief, that guaranties that the sequence $\left(x_{n}\right)$ converges.

## Interpretation with games.



The policeman has a winning tactic if and only if the space $X$ where the thief lives has RNP.

The constant tactic $t(x)=f$ for all $x \in X$ is not a winning tactic for the policeman.


A policeman may think that choosing $t(x)=f$ is a winning tactic.

The constant tactic $t(x)=f$ for all $x \in X$ is not a winning tactic for the policeman.


A policeman may think that choosing $t(x)=f$ is a winning tactic.

The constant tactic $t(x)=f$ for all $x \in X$ is not a winning tactic for the policeman.


Because this tactic garanties that $S_{n+1} \subset S_{n}$.
The zone where the thief is allowed to move decreases at each step.

The constant tactic $t(x)=f$ for all $x \in X$ is not a winning tactic for the policeman.


Because this tactic garanties that $S_{n+1} \subset S_{n}$.
The zone where the thief is allowed to move decreases at each step.

The constant tactic $t(x)=f$ for all $x \in X$ is not a winning tactic for the policeman.


But the thief can move alternatively to the right and to the left (if $\operatorname{dim}(X) \geq 2$ ).

## The constant tactic $t(x)=f$ for all $x \in X$ is not a winning tactic for the policeman.



But the thief can move alternatively to the right and to the left (if $\operatorname{dim}(X) \geq 2$ ).

The constant tactic $t(x)=f$ for all $x \in X$ is not a winning tactic for the policeman.


But the thief can move alternatively to the right and to the left (if $\operatorname{dim}(X) \geq 2$ ).

The constant tactic $t(x)=f$ for all $x \in X$ is not a winning tactic for the policeman.


And the sequence $\left(x_{n}\right)$ diverges if $\left(f\left(x_{n}\right)-p\right)$ does not go to 0 .

The constant tactic $t(x)=f$ for all $x \in X$ is not a winning tactic for the policeman.


And the sequence $\left(x_{n}\right)$ diverges if $\left(f\left(x_{n}\right)-p\right)$ does not go to 0 .

Choosing $t\left(x_{n}\right)$ such that the sequence of corresponding slices $S_{n}$ is decreasing is not a winning tactic for the policeman.


## Related results.

## Recall (Deville-Madiedo) :

If $X$ has RNP, then for each $f \in S_{X^{*}}$ and each $\varepsilon>0$, there exists $t: X \rightarrow S_{X^{*}} \cap B(f, \varepsilon)$ such that for all $\left(x_{n}\right)$ in $X$, if $\left(f\left(x_{n}\right)-\varepsilon\left\|x_{n}\right\|\right)$ is bounded below and if $\left\langle t\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$ for all $n$, then ( $x_{n}$ ) converges.

Prochazka : If $X$ is a Banach space with RNP and if $C$ is a closed convex bounded subset of $X$, there exists $t_{C}: C \rightarrow S_{X^{*}}$ such that for any sequence $\left(x_{n}\right) \subset C$, if $\left\langle t_{C}\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$ for all $n$, then ( $x_{n}$ ) converges.

Zeleny : If $\operatorname{dim}(X)<+\infty$, then $t$ can be chosen continuous.

First results : Maly-Zeleny, Deville-Matheron.

## Proof : $\eta$-tactics.

Fix $p \in \mathbb{Z}$ and $\eta>0$, and let $\Lambda_{p}=\{x \in X: f(x) \geq \varepsilon\|x\|+p\}$.
We construct $t$ on $\Lambda_{p} \backslash \wedge_{p+1}$ such that whenever $\left(x_{n}\right) \subset \Lambda_{p} \backslash \wedge_{p+1}$, $\left\langle t\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$ for all $n \quad \Rightarrow \quad\left(x_{n}\right)$ is $\eta$-Cauchy.


## Proof : $\eta$-tactics.

Fix $p \in \mathbb{Z}$ and $\eta>0$, and let $\Lambda_{p}=\{x \in X: f(x) \geq \varepsilon\|x\|+p\}$.
We construct $t$ on $\Lambda_{p} \backslash \Lambda_{p+1}$ such that whenever $\left(x_{n}\right) \subset \Lambda_{p} \backslash \Lambda_{p+1}$, $\left\langle t\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$ for all $n \quad \Rightarrow \quad\left(x_{n}\right)$ is $\eta$-Cauchy.


Let $f_{1} \in B(f, \varepsilon)$ and $c_{1} \in \mathbb{R}$ so that $C_{1}=\wedge_{p} \cap\left\{f_{1}<c_{1}\right\} \neq \emptyset$, $\operatorname{diam}\left(C_{1}\right)<\eta$, and $\Lambda_{p+1} \cap C_{1}=\emptyset . \quad$ If $x \in C_{1}, t(x)=f_{1}$.

## Proof : $\eta$-tactics.

Fix $p \in \mathbb{Z}$ and $\eta>0$, and let $\wedge_{p}=\{x \in X: f(x) \geq \varepsilon\|x\|+p\}$.
We construct $t$ on $\Lambda_{p} \backslash \Lambda_{p+1}$ such that whenever $\left(x_{n}\right) \subset \Lambda_{p} \backslash \Lambda_{p+1}$, $\left\langle t\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$ for all $n \quad \Rightarrow \quad\left(x_{n}\right)$ is $\eta$-Cauchy.


Let $f_{2} \in B(f, \varepsilon)$ and $c_{2} \in \mathbb{R}$ such that $C_{2}=\left(\Lambda_{p} \backslash C_{1}\right) \cap\left\{f_{2}<c_{2}\right\} \neq \emptyset$, $\operatorname{diam}\left(C_{2}\right)<\eta$, and $\Lambda_{p+1} \cap C_{2}=\emptyset . \quad$ If $x \in C_{2}, t(x)=f_{2}$.

## Proof : $\eta$-tactics.

Fix $p \in \mathbb{Z}$ and $\eta>0$, and let $\Lambda_{p}=\{x \in X: f(x) \geq \varepsilon\|x\|+p\}$.
We construct $t$ on $\wedge_{p} \backslash \wedge_{p+1}$ such that whenever $\left(x_{n}\right) \subset \Lambda_{p} \backslash \Lambda_{p+1}$, $\left\langle t\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$ for all $n \quad \Rightarrow \quad\left(x_{n}\right)$ is $\eta$-Cauchy.


By transfinite induction, let $f_{\alpha} \in B(f, \varepsilon), c_{\alpha} \in \mathbb{R}$ s. t. the associated convex sets $C_{\alpha}$ form a partition of $\Lambda_{p} \backslash \wedge_{p+1}$. If $x \in C_{\alpha}, t(x)=f_{\alpha}$.

## Proof : $\eta$-tactics.

If $x \in C_{\alpha}, t(x)=f_{\alpha}$.
If $\left(x_{n}\right) \subset \Lambda_{p} \backslash \wedge_{p+1}$ satisfies $\left\langle t\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$ for all $n$, $\exists \alpha_{n}$ such that $x_{n} \in C_{\alpha_{n}}$.


## Proof : $\eta$-tactics.

If $x \in C_{\alpha}, t(x)=f_{\alpha}$.
If $\left(x_{n}\right) \subset \Lambda_{p} \backslash \wedge_{p+1}$ satisfies $\left\langle t\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$ for all $n$, $\exists \alpha_{n}$ such that $x_{n} \in C_{\alpha_{n}}$. Claim : $\alpha_{n+1} \leq \alpha_{n} \quad$ for all $n$.


## Proof : $\eta$-tactics.

If $x \in C_{\alpha}, t(x)=f_{\alpha}$.
If $\left(x_{n}\right) \subset \wedge_{p} \backslash \wedge_{p+1}$ satisfies $\left\langle t\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$ for all $n$, $\exists \alpha_{n}$ such that $x_{n} \in C_{\alpha_{n}}$. Claim : $\alpha_{n+1} \leq \alpha_{n} \quad$ for all $n$.


There exists $n_{0}$ such that for all $n \geq n_{0}, \alpha_{n}=\alpha_{n_{0}}$.
So $x_{n} \in C_{\alpha_{n_{0}}}$ for all $n \geq n_{0}$ and $\operatorname{diam}\left(C_{n_{0}}\right)<\eta:\left(x_{n}\right)$ is $\eta$-Cauchy.

## Proof : multī- $\eta$-tactics.



Representation of $C_{\alpha},\left\{f_{\alpha}=c_{\alpha}\right\}$ in red.
If $x \in C_{\alpha}, t(x)=f_{\alpha}, \mathrm{t}$ is an $\eta$-tactic.

## Proof : multī- $\eta$-tactics.



Define $T(x)=\bar{B}\left(f_{\alpha}, \delta(x)\right)$ for $x \in C_{\alpha}$.
Any selection $t$ of $T$ is a $\eta$-tactic if $\delta(x)>0$ is small enough.

## Proof : Construction of $t$.

We construct multi-tactics $T_{k}$ on $\Lambda_{p} \backslash \wedge_{p+1}$ so that :

- $\forall x \in \wedge_{p} \backslash \wedge_{p+1}$ and $\forall k, T_{k+1}(x) \subset T_{k}(x)=\bar{B}\left(f_{k, x}, \delta_{k}(x)\right) \cap S_{X^{*}}$, - If $t$ is a selection of $T_{k}, t$ is a $\eta_{k}$-tactic, where $\left(\eta_{k}\right) \downarrow 0$.
- $\operatorname{diam}\left(T_{k}(x)\right) \rightarrow 0$.

$$
\cap T_{k}(x)=\{t(x)\} . \quad \text { We do this for all } p
$$

## Proof : Construction of $t$.

We construct multi-tactics $T_{k}$ on $\Lambda_{p} \backslash \wedge_{p+1}$ so that :

- $\forall x \in \wedge_{p} \backslash \wedge_{p+1}$ and $\forall k, T_{k+1}(x) \subset T_{k}(x)=\bar{B}\left(f_{k, x}, \delta_{k}(x)\right) \cap S_{X^{*}}$, - If $t$ is a selection of $T_{k}, t$ is a $\eta_{k}$-tactic, where $\left(\eta_{k}\right) \downarrow 0$.
- $\operatorname{diam}\left(T_{k}(x)\right) \rightarrow 0$.
$\cap T_{k}(x)=\{t(x)\} . \quad$ We do this for all $p$.
Assume that $\left(f\left(x_{n}\right)-\varepsilon\left\|x_{n}\right\|\right)$ is bounded below and that $\left\langle t\left(x_{n}\right), x_{n+1}-x_{n}\right\rangle \leq 0$ for all $n$.

If $x_{n} \in \wedge_{p_{n}} \backslash \wedge_{p_{n}+1}, \quad p_{n+1} \leq p_{n}$ and ( $p_{n}$ ) is bounded below : $p_{n}=p_{n_{0}}$ for all $n \geq n_{0}$.

The sequence $\left(x_{n}\right)_{n \geq n_{0}}$ is $\eta_{k}$ Cauchy for all $k$, hence converges.

## Application to differentiability.

Let $\Omega$ be open in $\mathbb{R}^{d}$ or in a Riemannian variety $(M, g)$ of dimension $d \geq 2$. Let $F: \Omega \times \mathbb{R}^{d}$ (or $T M$ ) $\rightarrow \mathbb{R}$ continuous.

Definition. $u: \Omega \rightarrow \mathbb{R}$ is an almost classical solution of $F(x, D u(x))=0$ if $u$ is diff. at each point of $\Omega$, and if :

1) $F(x, D u(x))=0 \quad$ a. e.
2) $F(x, D u(x)) \leq 0$ for all $x \in \Omega$.

## Application to differentiability.

Let $\Omega$ be open in $\mathbb{R}^{d}$ or in a Riemannian variety $(M, g)$ of dimension $d \geq 2$. Let $F: \Omega \times \mathbb{R}^{d}($ or $T M) \rightarrow \mathbb{R}$ continuous.

Definition. $u: \Omega \rightarrow \mathbb{R}$ is an almost classical solution of $F(x, D u(x))=0$ if $u$ is diff. at each point of $\Omega$, and if :

1) $F(x, D u(x))=0 \quad$ a. e.
2) $F(x, D u(x)) \leq 0$ for all $x \in \Omega$.

Theorem. (with J. Jaramillo) Suppose that
A) $\exists u_{0}: \Omega \rightarrow \mathbb{R} \mathcal{C}^{1}$, so that $F\left(x, D u_{0}(x)\right) \leq 0$ for all $x \in \Omega$.
B) $\exists \rho: \Omega \rightarrow(0,+\infty)$ locally bounded, such that
$\{v ; F(x, v) \leq 0\} \subset \bar{B}(0, \rho(x))$ for all $x \in \Omega$.
Then $F(x, D u(x))=0$ has an almost classical solution.

## Application to differentiability.

Let $\Omega$ be open in $\mathbb{R}^{d}$ or in a Riemannian variety $(M, g)$ of dimension $d \geq 2$. Let $F: \Omega \times \mathbb{R}^{d}($ or $T M) \rightarrow \mathbb{R}$ continuous.

Definition. $u: \Omega \rightarrow \mathbb{R}$ is an almost classical solution of $F(x, D u(x))=0$ if $u$ is diff. at each point of $\Omega$, and if :

1) $F(x, D u(x))=0 \quad$ a. e.
2) $F(x, D u(x)) \leq 0$ for all $x \in \Omega$.

Theorem. (with J. Jaramillo) Suppose that
A) $\exists u_{0}: \Omega \rightarrow \mathbb{R} \mathcal{C}^{1}$, so that $F\left(x, D u_{0}(x)\right) \leq 0$ for all $x \in \Omega$.
B) $\exists \rho: \Omega \rightarrow(0,+\infty)$ locally bounded, such that $\{v ; F(x, v) \leq 0\} \subset \bar{B}(0, \rho(x))$ for all $x \in \Omega$.
Then $F(x, D u(x))=0$ has an almost classical solution.
Example. If $d \geq 2, \exists u: S^{d} \rightarrow \mathbb{R}$ differentiable at each point, so that $\|D u(x)\|=1$ a. e.

Mountain smooth and steep almost everywhere!

