A CHARACTERIZATION OF THE RADON-NIKODYM PROPERTY.

APPLICATION TO THE CONSTRUCTION OF ALMOST CLASSICAL SOLUTIONS OF HAMILTON-JACOBI EQUATIONS.

Robert Deville Université de Bordeaux.

Esneux, 28/05/2015.

(Whitney) if $d \ge 2$, there exists $u : \mathbb{R}^d \to \mathbb{R} \ C^1$ and $\gamma : [0, 1] \to \mathbb{R}^d$ continuous such that $u(\gamma(0)) \ne u(\gamma(1))$ and $Du(\gamma(t)) = 0$ for all $t \in [0, 1]$.

(Whitney) if $d \ge 2$, there exists $u : \mathbb{R}^d \to \mathbb{R} \ C^1$ and $\gamma : [0, 1] \to \mathbb{R}^d$ continuous such that $u(\gamma(0)) \ne u(\gamma(1))$ and $Du(\gamma(t)) = 0$ for all $t \in [0, 1]$.

Buczolich : If $d \ge 2$, $\exists u : \mathbb{R}^d \to \mathbb{R}$ differentiable at **each** point, such that Du(0) = 0 and $||Du(x)|| \ge 1$ a. e.

(Whitney) if $d \ge 2$, there exists $u : \mathbb{R}^d \to \mathbb{R} \ C^1$ and $\gamma : [0, 1] \to \mathbb{R}^d$ continuous such that $u(\gamma(0)) \ne u(\gamma(1))$ and $Du(\gamma(t)) = 0$ for all $t \in [0, 1]$.

Buczolich : If $d \ge 2$, $\exists u : \mathbb{R}^d \to \mathbb{R}$ differentiable at each point, such that Du(0) = 0 and $||Du(x)|| \ge 1$ a. e.

Deville-Matheron : If $d \ge 2$ and Ω is an open bounded subset of \mathbb{R}^d , $\exists u : \mathbb{R}^d \to \mathbb{R}$ differentiable at **each** point, such that u(x) = 0 if $x \notin \Omega$ and ||Du(x)|| = 1 a. e. on Ω ,

Moreover if $\varepsilon > 0$ and $a \in \mathbb{R}^d$, ||a|| = 1 are fixed, $||Du(x) - a|| < \varepsilon$ or $||Du(x) + a|| < \varepsilon$ a. e. on Ω .

(Whitney) if $d \ge 2$, there exists $u : \mathbb{R}^d \to \mathbb{R} \ C^1$ and $\gamma : [0, 1] \to \mathbb{R}^d$ continuous such that $u(\gamma(0)) \ne u(\gamma(1))$ and $Du(\gamma(t)) = 0$ for all $t \in [0, 1]$.

Buczolich : If $d \ge 2$, $\exists u : \mathbb{R}^d \to \mathbb{R}$ differentiable at each point, such that Du(0) = 0 and $||Du(x)|| \ge 1$ a. e.

Deville-Matheron : If $d \ge 2$ and Ω is an open bounded subset of \mathbb{R}^d , $\exists u : \mathbb{R}^d \to \mathbb{R}$ differentiable at **each** point, such that u(x) = 0 if $x \notin \Omega$ and ||Du(x)|| = 1 a. e. on Ω ,

Moreover if $\varepsilon > 0$ and $a \in \mathbb{R}^d$, ||a|| = 1 are fixed, $||Du(x) - a|| < \varepsilon$ or $||Du(x) + a|| < \varepsilon$ a. e. on Ω .

The function $u(x) = d(x, \partial \Omega)$ is the viscosity solution of ||Du(x)|| = 1 on Ω with the boundary condition u(x) = 0 if $x \in \partial \Omega$, but is not differentiable on Ω .

Construction of $u : \mathbb{R}^d \to \mathbb{R}$ differentiable at each point, such that u(x) = 0 si $x \notin \Omega$ and ||Du(x)|| = 1 a. e. on Ω .

Lemma. Let $a \in \mathbb{R}^d \setminus \{0\}$, Q be a cube of \mathbb{R}^d , and $\varepsilon > 0$.

Then, $\exists u : \mathbb{R}^d \to \mathbb{R}$ bounded, of class \mathcal{C}^{∞} , such that :

(a) $u \equiv 0$ in a neighbourhood of ∂Q and $||u||_{\infty} \leq \varepsilon$.

(b) $\lambda_d(\{x \in Q; Du(x) = -a \text{ or } Du(x) = a\}) \ge (1 - \varepsilon)\lambda_d(Q).$

(c) Du = v + w with $||w||_{\infty} < \varepsilon$, $\{v(x); x \in Q\} \subset [-a, a]$ and v piecewise constant on Q.

Construction of $u : \mathbb{R}^d \to \mathbb{R}$ differentiable at each point, such that u(x) = 0 si $x \notin \Omega$ and ||Du(x)|| = 1 a. e. on Ω .

Lemma. Let $a \in \mathbb{R}^d \setminus \{0\}$, Q be a cube of \mathbb{R}^d , and $\varepsilon > 0$. Then, $\exists u : \mathbb{R}^d \to \mathbb{R}$ bounded, of class \mathcal{C}^{∞} , such that : (a) $u \equiv 0$ in a neighbourhood of ∂Q and $||u||_{\infty} \leq \varepsilon$. (b) $\lambda_d (\{x \in Q; Du(x) = -a \text{ or } Du(x) = a\}) \geq (1 - \varepsilon)\lambda_d(Q)$. (c) Du = v + w with $||w||_{\infty} < \varepsilon$, $\{v(x); x \in Q\} \subset [-a, a]$ and v piecewise constant on Q.

For each n, Q_n is a "partition" of $[0, 1]^d$ into cubes and Q_{n+1} is a refinement of Q_n .

 $u_n \in \mathcal{C}^{\infty}(\mathbb{R}^d)$, such that $\forall Q \in \mathcal{Q}_n$, $u_{n|Q}$ defined using the lemma, with a = a(Q) et $\varepsilon = \varepsilon_n$ to be chosen. solution : $u = \sum_{n=0}^{\infty} u_n$

Differentiability criterium.

X, Y Banach spaces, $u_n: X \to Y$, $n \ge 1$, C^1 such that :

(1) For all
$$x \in X$$
, $\left(\sum Du_n(x)\right)$ converges.
(2) $\left(Du_n\right)$ converges uniformly to 0.
(3) $\|u_{n+1}\|_{\infty} = o(\|u_n\|_{\infty}).$
(4) $\lim_{n \to \infty} osc\left(\sum_{k=1}^n Du_k, \|u_{n+1}\|_{\infty}\right) = 0.$

Then $u := \sum_{n=1}^{\infty} u_n$ is well defined, everywhere differentiable, and $Du(x) = \sum_{n=1}^{\infty} Du_n(x)$ for all $x \in X$.

Recall : $osc(f, \delta) := \sup \{ ||f(x) - f(y)||; ||x - y|| < \delta \}.$

How to ensure condition (1) together with the fact that $||Du(x)|| = ||\sum_{n=1}^{\infty} Du_n(x)|| = 1$ for almost every $x \in \Omega$?

Differentiability criterium.

X, Y Banach spaces, $u_n: X \to Y$, $n \ge 1$, C^1 such that :

(1) For all
$$x \in X$$
, $\left(\sum Du_n(x)\right)$ converges.
(2) $\left(Du_n\right)$ converges uniformly to 0.
(3) $\|u_{n+1}\|_{\infty} = o(\|u_n\|_{\infty})$.
(4) $\lim_{n \to \infty} osc\left(\sum_{k=1}^{n} Du_k, \|u_{n+1}\|_{\infty}\right) = 0$.
Then $u := \sum_{n=1}^{\infty} u_n$ is well defined, everywhere differentiable,

and
$$Du(x) = \sum_{n=1}^{\infty} Du_n(x)$$
 for all $x \in X$.

Theorem : $\exists t : \mathbb{R}^d \to S_{\mathbb{R}^d}$ such that if $\{a_n; n \in \mathbb{N}\} \subset \mathbb{R}^d$ is a bounded sequence satisfying $\langle t(a_n), a_{n+1} - a_n \rangle \geq 0$ for all n, then (a_n) converges.

This last theorem involves a monotony condition.

So we are led to the following question :

Is it possible to extend the assertion Each non increasing bounded below sequence converges in a Banach space setting?

Yes if X has the Radon-Nikodym property.

Theorem : $\exists t : \mathbb{R}^d \to S_{\mathbb{R}^d}$ such that if $\{a_n; n \in \mathbb{N}\} \subset \mathbb{R}^d$ is a bounded sequence satisfying $\langle t(a_n), a_{n+1} - a_n \rangle \geq 0$ for all n, then (a_n) converges.

The Radon-Nikodym property.

Definition. Let X be a Banach space. X has the Radon-Nikodym property if, whenever C is a closed convex bounded subset of X and $\eta > 0$, there exists $g \in X^*$ and $c \in \mathbb{R}$ such that

$$C \cap \{g < c\} \neq \emptyset$$
 and $diam(C \cap \{g < c\}) < \varepsilon$.

Examples. X reflexive or X separable dual space \Rightarrow X has RNP.

In particular, L^p spaces, $(1 and <math>\ell^1$ have RNP.

But $L^1([0,1])$ and C(K) spaces (K infinite compact) fail RNP.

Known characterizations.

Theorem. Let X be a Banach space. T.F.A.E. :

- (1) X has the Radon-Nikodym property.
- (2) Each X-valued measure on [0, 1] which is absolutly continuous w. r. t. Lebesgue measure has a density.

(3)
$$L^1([0,1],X)^* = L^\infty([0,1],X^*).$$

- (4) If (X_n) is a martingale with values in B_X , then (X_n) converges a. s..
- (5) If $f : \mathbb{R} \to X$ is Lipschitz, then f is differentiable a. e. (at least at one point).
- (6) If C is a closed convex bounded subset of X, and if $f : C \to \mathbb{R}$ is $\ell.s.c.$ and bounded below, then $\{g \in X^*; f + g \text{ has a strong min. on } C\}$ is dense in X^* .

The main result (with O. Madiedo).

Theorem : If X is a Banach space, T.F.A.E. :

(1) X has the Radon-Nikodym property.

(2) For all
$$f \in S_{X^*}$$
 and all $\varepsilon > 0$,
there exists $t : X \to S_{X^*} \cap B(f, \varepsilon)$
such that for all sequence (x_n) in X ,

if
$$(f(x_n) - \varepsilon ||x_n||)$$
 is bounded below
and if $\langle t(x_n), x_{n+1} - x_n \rangle \leq 0$ for all n ,

then (x_n) converges.

This result is non trivial even when dim(X) = 2.

If $p \in \mathbb{R}$, we define $\Lambda_p = \{x \in X : f(x) \ge \varepsilon ||x|| + p\}.$

Player 1 chooses $x_n \in \Lambda_p$. $(f(x_n) - \varepsilon ||x_n||)$ bounded below Player 2 chooses slices S_n of Λ_p . Player 1 start the game and chooses $x_1 \in \Lambda_p$.

Player 2 then chooses a slice $S_1 = \{x \in \Lambda_p; f_1(x) \leq f_1(x_1)\}.$

 $t(x_1) = f_1$

Player 1 chooses a point $x_2 \in S_1$.

Hypothesis $\langle t(x_n), x_{n+1} - x_n \rangle \leq 0$

Player 2 chooses a slice $S_2 = \{x \in \Lambda_p; f_2(x) \le f_2(x_2)\}.$

The slice S_2 is not necessarily included in S_1 .

Player 1 chooses a point $x_3 \in S_2$.

And so on. Player 1 constructs a sequence (x_n) in $\Lambda_p \subset X$. And player 2 constructs a sequence (f_n) in X^* , defining slices S_n of Λ_p .

Player 1 is a thief and player 2 is a policeman. Player 2 (the policeman) wishes that the sequence (x_n) converges.

Player 2 (the thief) wishes to escape.

i. e. player 2 wins if the sequence (x_n) diverges.

A winning tactic for the policeman is a choice of slices depending only on the last position of the thief, that guaranties that the sequence (x_n) converges.

The policeman has a winning tactic if and only if the space X where the thief lives has RNP.

A policeman may think that choosing t(x) = f is a winning tactic.

A policeman may think that choosing t(x) = f is a winning tactic.

Because this tactic garanties that $S_{n+1} \subset S_n$.

The zone where the thief is allowed to move decreases at each step.

Because this tactic garanties that $S_{n+1} \subset S_n$.

The zone where the thief is allowed to move decreases at each step.

But the thief can move alternatively to the right and to the left (if $dim(X) \ge 2$).

But the thief can move alternatively to the right and to the left (if $dim(X) \ge 2$).

But the thief can move alternatively to the right and to the left (if $dim(X) \ge 2$).

And the sequence (x_n) diverges if $(f(x_n) - p)$ does not go to 0.

And the sequence (x_n) diverges if $(f(x_n) - p)$ does not go to 0.

Choosing $t(x_n)$ such that the sequence of corresponding slices S_n is decreasing is not a winning tactic for the policeman.

Related results.

Recall (Deville-Madiedo) :

If X has RNP, then for each $f \in S_{X^*}$ and each $\varepsilon > 0$, there exists $t : X \to S_{X^*} \cap B(f, \varepsilon)$ such that for all (x_n) in X, if $(f(x_n) - \varepsilon ||x_n||)$ is bounded below and if $\langle t(x_n), x_{n+1} - x_n \rangle \leq 0$ for all n, then (x_n) converges.

Prochazka : If X is a Banach space with RNP and if C is a closed convex bounded subset of X, there exists $t_C : C \to S_{X^*}$ such that for any sequence $(x_n) \subset C$, if $\langle t_C(x_n), x_{n+1} - x_n \rangle \leq 0$ for all n, then (x_n) converges.

Zeleny : If $dim(X) < +\infty$, then t can be chosen continuous.

First results : Maly-Zeleny, Deville-Matheron.

Fix $p \in \mathbb{Z}$ and $\eta > 0$, and let $\Lambda_p = \{x \in X : f(x) \ge \varepsilon ||x|| + p\}.$

We construct t on $\Lambda_p \setminus \Lambda_{p+1}$ such that whenever $(x_n) \subset \Lambda_p \setminus \Lambda_{p+1}$, $\langle t(x_n), x_{n+1} - x_n \rangle \leq 0$ for all $n \Rightarrow (x_n)$ is η -Cauchy.

Fix $p \in \mathbb{Z}$ and $\eta > 0$, and let $\Lambda_p = \{x \in X : f(x) \ge \varepsilon ||x|| + p\}.$

We construct t on $\Lambda_p \setminus \Lambda_{p+1}$ such that whenever $(x_n) \subset \Lambda_p \setminus \Lambda_{p+1}$, $\langle t(x_n), x_{n+1} - x_n \rangle \leq 0$ for all $n \Rightarrow (x_n)$ is η -Cauchy.

Let $f_1 \in B(f, \varepsilon)$ and $c_1 \in \mathbb{R}$ so that $C_1 = \Lambda_p \cap \{f_1 < c_1\} \neq \emptyset$, $diam(C_1) < \eta$, and $\Lambda_{p+1} \cap C_1 = \emptyset$. If $x \in C_1$, $t(x) = f_1$.

Fix $p \in \mathbb{Z}$ and $\eta > 0$, and let $\Lambda_p = \{x \in X : f(x) \ge \varepsilon ||x|| + p\}.$

We construct t on $\Lambda_p \setminus \Lambda_{p+1}$ such that whenever $(x_n) \subset \Lambda_p \setminus \Lambda_{p+1}$, $\langle t(x_n), x_{n+1} - x_n \rangle \leq 0$ for all $n \Rightarrow (x_n)$ is η -Cauchy.

Let $f_2 \in B(f,\varepsilon)$ and $c_2 \in \mathbb{R}$ such that $C_2 = (\Lambda_p \setminus C_1) \cap \{f_2 < c_2\} \neq \emptyset$, $diam(C_2) < \eta$, and $\Lambda_{p+1} \cap C_2 = \emptyset$. If $x \in C_2$, $t(x) = f_2$.

Fix $p \in \mathbb{Z}$ and $\eta > 0$, and let $\Lambda_p = \{x \in X : f(x) \ge \varepsilon ||x|| + p\}.$

We construct t on $\Lambda_p \setminus \Lambda_{p+1}$ such that whenever $(x_n) \subset \Lambda_p \setminus \Lambda_{p+1}$, $\langle t(x_n), x_{n+1} - x_n \rangle \leq 0$ for all $n \Rightarrow (x_n)$ is η -Cauchy.

By transfinite induction, let $f_{\alpha} \in B(f, \varepsilon)$, $c_{\alpha} \in \mathbb{R}$ s. t. the associated convex sets C_{α} form a partition of $\Lambda_p \setminus \Lambda_{p+1}$. If $x \in C_{\alpha}$, $t(x) = f_{\alpha}$.

If $x \in C_{\alpha}$, $t(x) = f_{\alpha}$.

If $(x_n) \subset \Lambda_p \setminus \Lambda_{p+1}$ satisfies $\langle t(x_n), x_{n+1} - x_n \rangle \leq 0$ for all n, $\exists \alpha_n$ such that $x_n \in C_{\alpha_n}$.

If $x \in C_{\alpha}$, $t(x) = f_{\alpha}$.

If $(x_n) \subset \Lambda_p \setminus \Lambda_{p+1}$ satisfies $\langle t(x_n), x_{n+1} - x_n \rangle \leq 0$ for all n, $\exists \alpha_n$ such that $x_n \in C_{\alpha_n}$. Claim : $\alpha_{n+1} \leq \alpha_n$ for all n.

If $x \in C_{\alpha}$, $t(x) = f_{\alpha}$.

If $(x_n) \subset \Lambda_p \setminus \Lambda_{p+1}$ satisfies $\langle t(x_n), x_{n+1} - x_n \rangle \leq 0$ for all n, $\exists \alpha_n$ such that $x_n \in C_{\alpha_n}$. Claim : $\alpha_{n+1} \leq \alpha_n$ for all n.

There exists n_0 such that for all $n \ge n_0$, $\alpha_n = \alpha_{n_0}$. So $x_n \in C_{\alpha_{n_0}}$ for all $n \ge n_0$ and $diam(C_{n_0}) < \eta : (x_n)$ is η -Cauchy.

Proof : multi- η -tactics.

Representation of C_{α} , $\{f_{\alpha} = c_{\alpha}\}$ in red.

If $x \in C_{\alpha}$, $t(x) = f_{\alpha}$, t is an η -tactic.

Proof : multi- η -tactics.

Define $T(x) = \overline{B}(f_{\alpha}, \delta(x))$ for $x \in C_{\alpha}$.

Any selection t of T is a η -tactic if $\delta(x) > 0$ is small enough.

Proof : Construction of t.

We construct multi-tactics T_k on $\Lambda_p \setminus \Lambda_{p+1}$ so that :

- $\forall x \in \Lambda_p \setminus \Lambda_{p+1}$ and $\forall k, T_{k+1}(x) \subset T_k(x) = \overline{B}(f_{k,x}, \delta_k(x)) \cap S_{X^*}$,
- If t is a selection of T_k , t is a η_k -tactic, where $(\eta_k) \downarrow 0$.
- $diam(T_k(x)) \to 0.$

 $\cap T_k(x) = \{t(x)\}.$ We do this for all p.

Proof : Construction of t**.**

We construct multi-tactics T_k on $\Lambda_p \setminus \Lambda_{p+1}$ so that :

- $\forall x \in \Lambda_p \setminus \Lambda_{p+1}$ and $\forall k, T_{k+1}(x) \subset T_k(x) = \overline{B}(f_{k,x}, \delta_k(x)) \cap S_{X^*}$,
- If t is a selection of T_k , t is a η_k -tactic, where $(\eta_k) \downarrow 0$.
- $diam(T_k(x)) \to 0.$

 $\cap T_k(x) = \{t(x)\}.$ We do this for all p.

Assume that $(f(x_n) - \varepsilon ||x_n||)$ is bounded below and that $\langle t(x_n), x_{n+1} - x_n \rangle \leq 0$ for all n.

If $x_n \in \Lambda_{p_n} \setminus \Lambda_{p_n+1}$, $p_{n+1} \leq p_n$ and (p_n) is bounded below : $p_n = p_{n_0}$ for all $n \geq n_0$.

The sequence $(x_n)_{n>n_0}$ is η_k Cauchy for all k, hence converges.

Application to differentiability.

Let Ω be open in \mathbb{R}^d or in a Riemannian variety (M,g) of dimension $d \geq 2$. Let $F : \Omega \times \mathbb{R}^d$ (or TM) $\to \mathbb{R}$ continuous.

Definition. $u : \Omega \to \mathbb{R}$ is an almost classical solution of F(x, Du(x)) = 0 if u is diff. at **each** point of Ω , and if : 1) F(x, Du(x)) = 0 a. e. 2) $F(x, Du(x)) \leq 0$ for all $x \in \Omega$.

Application to differentiability.

Let Ω be open in \mathbb{R}^d or in a Riemannian variety (M,g) of dimension $d \geq 2$. Let $F : \Omega \times \mathbb{R}^d$ (or TM) $\to \mathbb{R}$ continuous.

Definition. $u : \Omega \to \mathbb{R}$ is an almost classical solution of F(x, Du(x)) = 0 if u is diff. at **each** point of Ω , and if : 1) F(x, Du(x)) = 0 a. e. 2) $F(x, Du(x)) \leq 0$ for all $x \in \Omega$.

Theorem. (with J. Jaramillo) Suppose that A) $\exists u_0 : \Omega \to \mathbb{R} \ C^1$, so that $F(x, Du_0(x)) \leq 0$ for all $x \in \Omega$. B) $\exists \rho : \Omega \to (0, +\infty)$ locally bounded, such that $\{v; F(x, v) \leq 0\} \subset \overline{B}(0, \rho(x))$ for all $x \in \Omega$. Then F(x, Du(x)) = 0 has an almost classical solution.

Application to differentiability.

Let Ω be open in \mathbb{R}^d or in a Riemannian variety (M,g) of dimension $d \geq 2$. Let $F : \Omega \times \mathbb{R}^d$ (or TM) $\to \mathbb{R}$ continuous.

Definition. $u : \Omega \to \mathbb{R}$ is an almost classical solution of F(x, Du(x)) = 0 if u is diff. at **each** point of Ω , and if : 1) F(x, Du(x)) = 0 a. e. 2) $F(x, Du(x)) \leq 0$ for all $x \in \Omega$.

Theorem. (with J. Jaramillo) Suppose that A) $\exists u_0 : \Omega \to \mathbb{R} \ C^1$, so that $F(x, Du_0(x)) \leq 0$ for all $x \in \Omega$. B) $\exists \rho : \Omega \to (0, +\infty)$ locally bounded, such that $\{v; F(x, v) \leq 0\} \subset \overline{B}(0, \rho(x))$ for all $x \in \Omega$. Then F(x, Du(x)) = 0 has an almost classical solution.

Example. If $d \ge 2$, $\exists u : S^d \to \mathbb{R}$ differentiable at each point, so that ||Du(x)|| = 1 a. e.

Mountain smooth and steep almost everywhere!