Lineability problems motivated by a classical characterization of continuity

Gustavo Adolfo Muñoz Fernández GENERICITY & SMALL SETS IN ANALISYS

Joint work with

J. L. Gámez, D. Pellegrino, V. M. Sánchez and J. B. Seoane

ESNEUX, 27 MAY 2015

Theorem

- If $f : \mathbb{R} \to \mathbb{R}$ is continuous then
 - *f* transforms connected sets into connected sets.
 - I transforms compact sets into compact sets.

Theorem

- If $f : \mathbb{R} \to \mathbb{R}$ is a function such that
 - I f transforms connected sets into connected sets,
 - 2 f transforms compact sets into compact sets, and

then f is necessarily continuous.

Motivation for the generalization

• A function $f : \mathbb{R} \to \mathbb{R}$ is continuous in \mathbb{R} if and only if

 $f^{-1}(U)$ is open for all open set $U \subset \mathbb{R}$.

• Is the previous definition equivalent to

f(U) is open for all open set $U \subset \mathbb{R}$?

- ${\scriptstyle \bullet}$ Obviously, the answer is NO , but:
- \bullet Is there a family ${\mathcal F}$ of subsets of ${\mathbb R}$ such that

f is continuous if and only if $f(U) \in \mathcal{F}$ for all $U \in \mathcal{F}$.

• The answer again is no, but the result is highly nontrivial.

Theorem (Velleman (1997))

There are not families ${\mathcal F}$ and ${\mathcal G}$ of subsets of ${\mathbb R}$ such that

 $f : \mathbb{R} \to \mathbb{R}$ is continuous if and only if $f(U) \in \mathcal{G}$ for all $U \in \mathcal{F}$.

Theorem (Velleman (1997), Hamlett (1975), White (1968))

There are two families \mathcal{F} and \mathcal{G} of subsets of \mathbb{R} such that $f : \mathbb{R} \to \mathbb{R}$ is continuous if and only if

1
$$f(U) \in \mathcal{F}$$
 for all $U \in \mathcal{F}$, and

2
$$f(V) \in \mathcal{G}$$
 for all $V \in \mathcal{G}$.

The characterization again

A plausible choice for ${\mathcal F}$ and ${\mathcal G}$ in the previous theorem is the following:

- **2** \mathcal{G} is the family of all compact subsets of \mathbb{R} .

A generalization of the characterization

- The same result holds for functions f : X → Y where X is first countable and locally connected and Y is regular.
- Output: However the result is not true for functions between metric spaces in general.

Derivatives as connected functions

Taken from a test for Analysis I students

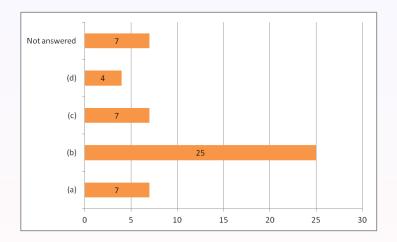
Let f be differentiable in I = (a, b) and $c \in I$. Then:

(a) f is uniformly continuous I.

(b)
$$\lim_{x \to c} f'(x) = f'(c).$$

- (c) f'(I) is an interval.
- (d) None of the previous answers are correct.

Outcome of the test question



Derivatives as connected functions

Theorem (Darboux)

If $f : \mathbb{R} \to \mathbb{R}$ is differentiable, then f' is a Darboux functions, i.e., f' transforms intervals into intervals.

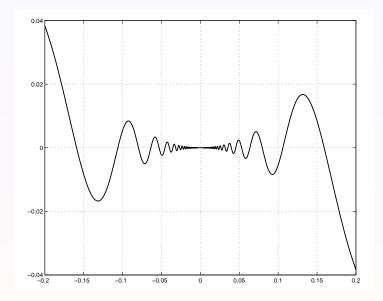
Derivatives are not necessarily continuous

The derivative of

$$G(x) = \begin{cases} x^2 \sin \frac{1}{x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0, \end{cases}$$

is not continuous at 0.

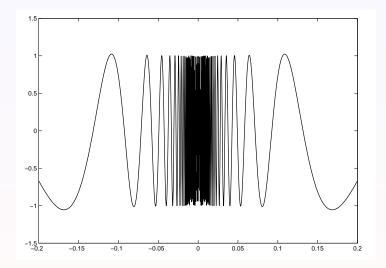
The graph of G(x)



Gustavo Adolfo Muñoz Fernández

On a characterization of continuity

The graph of G'(x)



Derivative with uncountably many discontinuities

Volterra construction

- Choose $x_0 > 0$ so that $G'(x_0) = 0$.
- **2** Define $G_0: (0, 2x_0) \to \mathbb{R}$ as follows:

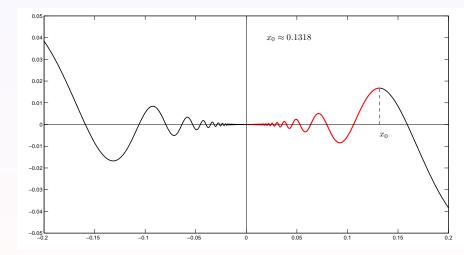
$$G_0(x) = egin{cases} G(x) & ext{if } x \in (0, x_0], \ G(2x_0 - x) & ext{if } x \in [x_0, 2x_0). \end{cases}$$

Using translations and homothetic transformations of G₀, F coincides with a copy of G₀ in every interval (a, b) of [0, 1] \ C, where C is the Cantor set.

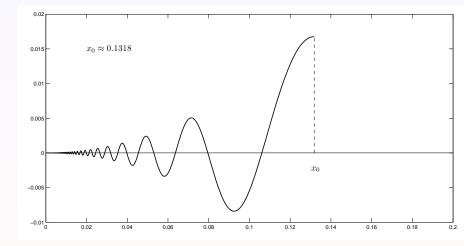
• We put
$$F(x) = 0$$
 for all $x \in C$.

• F is differentiable in [0,1] but F' is not continuous in C.

Visual Volterra construction

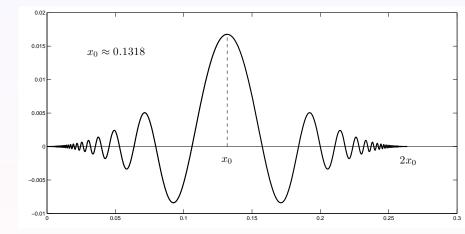


Visual Volterra construction

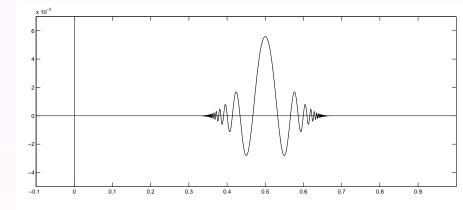


Gustavo Adolfo Muñoz Fernández On a characterization of continuity

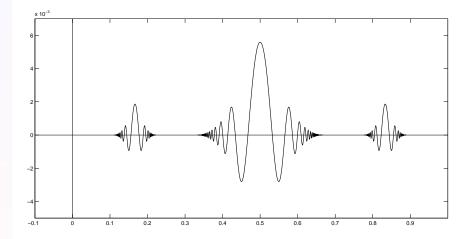
Visual Volterra construction: G_0



Visual Volterra construction: Replication of G_0



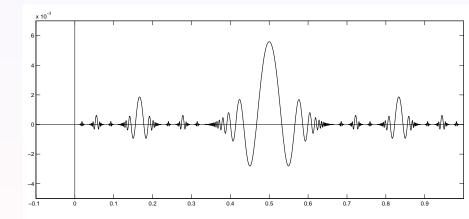
Visual Volterra construction: Replication of G_0



Gustavo Adolfo Muñoz Fernández On a characterization of continuity

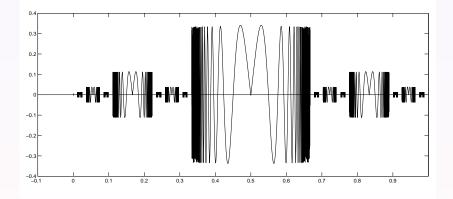
1 2 3 4 5 6 7 8 9 Volterra constructions

Function whose derivative has uncountably many discontinuities



Gustavo Adolfo Muñoz Fernández On a characterization of continuity

Derivative with uncountably many discontinuities



More about Volterra constructions

Remark

- The Volterra construction goes back to 1881.
- O If ε ∈ [0, 1), there is a Volterra type construction F_ε over any Cantor type set in [0, 1] of measure ε.
- O The function F' is not Riemann integrable if we choose a Cantor set of positive measure.
- If E ⊂ [0, 1] is nowhere dense, then there is a Volterra type construction in [0, 1] whose derivative is discontinuous in E.

Theorem

If $A \subset [0,1]$ is a dense G_{δ} set then there exists $f : [0,1] \to \mathbb{R}$ such that f' is continuous in A and discontinuous in $[0,1] \setminus A$.

More about Volterra constructions

Sketch of the proof

- $[0,1] \setminus A = \bigcup_{n=1}^{\infty} E_n$ with E_n nowhere dense.
- Consider F_n a Volterra construction for E_n with oscillation 1 at all points of E_n .
- $f = \sum_{n=1}^{\infty} \frac{F_n}{2^n}$ is the desired function.

Theorem

- The set of continuity points of a function in [0,1] is a G_{δ} set.
- The set of continuity points of a derivative in [0, 1] is a dense G_δ set.

Corollary

A set $A \subset [0,1]$ is the set of continuity points of a derivative defined on [0,1] if and only if A is a dense G_{δ} set.

Pompeiu derivatives

Definition

A Pompeiu derivative in $\left[0,1\right]$ is a derivative with a dense set of zeros.

Remark

- If $f : [0,1] \to \mathbb{R}$ is a Pompeiu derivative, $x_0 \in [0,1]$ and $f'(x_0) \neq 0$, then f' is not continuous at x_0 .
- In principle, Pompeiu derivatives do not necessarily have many discontinuities.
- Operation Properties of the second second

Theorem

The bounded Pompeiu derivatives on [0, 1] form a Banach space with he uniform norm.

Pompeiu's original example (1907)

Pompeiu derivative with many discontinuities

- Let $\{r_n : n \in \mathbb{N}\}$ an ordering of $[0, 1] \cap \mathbb{Q}$.
- **2** Let $\sum_{n=1}^{\infty} \alpha_n$ be a convergent series of positive real numbers.

9 Define
$$g(x) = \sum_{n=1}^{\infty} \alpha_n (x - r_n)^{\frac{1}{3}}$$
 in [0, 1].

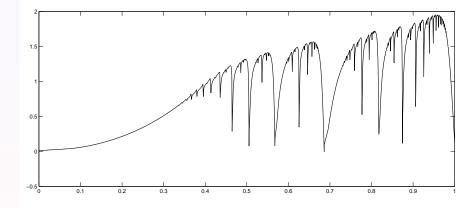
- g is continuous and strictly increasing.
- $g'(x) = \sum_{n=1}^{\infty} \frac{1}{3} \alpha_n (x r_n)^{-\frac{2}{3}} > 0$ whenever the sum is finite.

•
$$g'(x) = \infty$$
 whenever $\sum_{n=1}^{\infty} \frac{1}{3} \alpha_n (x - r_n)^{-\frac{2}{3}} = \infty$.

• In particular
$$g'(r_n) = \infty$$
.

- Normalize g by defining $G(x) = \frac{g(x)-g(0)}{g(1)-g(0)}$ in [0,1].
- Define $F = G^{-1}$ on [0, 1].
- F is everywhere differentiable in [0, 1] and $F'(r_n) = 0$.
- **①** Hence F' is a Pompeiu derivative.

Graph of the Pompeiu's original example



Gustavo Adolfo Muñoz Fernández On a characterization of continuity

Definition (Aron, Gurariy, and Seoane (2004))

A subset V of a linear space E is λ -lineable if $V \cup \{0\}$ contains a linear space of dimension λ .

Theorem (Gámez, Muñoz, Sánchez, and Seoane (2010))

The set of differentiable functions on $\mathbb R$ whose derivatives are discontinuous almost everywhere is $\mathfrak c\text{-lineable}.$

Corollary

The set of functions $f : \mathbb{R} \to \mathbb{R}$ that transform connected sets into connected sets and are discontinuous almost everywhere is \mathfrak{c} -lineable.

Definition

Let $E \subset \mathbb{R}$. We say that $x \in \mathbb{R}$ is a point of density of E if

$$\liminf_{\varepsilon \to 0^+} \frac{m(E \cap (x - \varepsilon, x + \varepsilon))}{2\varepsilon} = 1,$$

where m stands for the Lebesgue measure on \mathbb{R} . We denote

dens
$$E = \{ x \in \mathbb{R} : x \text{ is a density point of } E \}.$$

Definition

We say that $f : \mathbb{R} \to \mathbb{R}$ is approximately continuous at $x_0 \in \mathbb{R}$, if there exists $E \subset \mathbb{R}$ such that $x_0 \in \text{dens } E$ and

$$\lim_{\substack{x \to x_0 \\ x \in E}} f(x) = f(x_0).$$

Lemma (Zahorki)

There exists an approximately continuous mapping $f_0 : \mathbb{R} \to [0, 1]$ satisfying the following properties:

- **1** Z_{f_0} is a G_{δ} , dense set with Lebesgue measure zero.
- 2 f_0 is discontinuous at every $x \in \mathbb{R} \setminus Z_{f_0}$.

Theorem (Gámez, Muñoz, Sánchez, and Seoane (2010))

The set of bounded approximately continuous mappings defined on \mathbb{R} that are discontinuous almost everywhere is c-lineable.

Sketch of the proof

The set $\{f_0(x)e^{-\alpha|x|}: \alpha \in (0,\infty)\}$ is a basis of cardinality \mathfrak{c} .

Theorem

All bounded approximately continuous functions on $\mathbb R$ are derivatives.

Corollary (Gámez, Muñoz, Sánchez, and Seoane (2010))

The set of bounded Pompeiu derivatives on \mathbb{R} that are discontinuous almost everywhere is \mathfrak{c} -lineable.

Everywhere surjective functions

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is everywhere surjective if $f(I) = \mathbb{R}$ for all nontrivial interval I.

Theorem (Aron, Gurariy, and Seoane (2004))

The set of everywhere surjective functions on \mathbb{R} is 2^c-lineable.

Corollary

The set of functions $f : \mathbb{R} \to \mathbb{R}$ that transform connected sets into connected sets and are discontinuous everywhere is 2^c-lineable.

Functions that transform compact sets into compact sets

Theorem (Gámez, Muñoz, and Seoane (2011))

The set of functions $f : \mathbb{R} \to \mathbb{R}$ that have finite range (and hence transform any set into a compact set) and are everywhere discontinuous is 2^c-lineable.

Sketch of proof

- Let H be a Hamel basis of \mathbb{R} over \mathbb{Q} .
- Let $\varphi : \mathbb{R} \to \mathbb{R}^{\mathbb{N}}$ a \mathbb{Q} -linear isomorphism.
- For all A ⊂ H we define f_A(x) := χ_([A]\{0})^N(φ(x)), for all x ∈ ℝ.
- Choose h₀ ∈ H and consider
 F = {f_A : Ø ≠ A ∈ P(H), h₀ ∉ A}. Then F is linearly independent and its cardinality is 2^c.

Polynomials in finite variables

- Multiindex: $\alpha = (\alpha_1, \ldots, \alpha_m) \in (\mathbb{N} \cup \{0\})^m$.
- Trace of a multiindex: $|\alpha| = \alpha_1 + \cdots + \alpha_m$.
- Monomial $\mathbf{x}^{\alpha} := x_1^{\alpha_1} \cdots x_m^{\alpha_m}$, where $\mathbf{x} = (x_1, \dots, x_m) \in \mathbb{K}^m$.

Definition (Polynomials on \mathbb{K}^m)

A polynomial of degree at most n in \mathbb{K}^m is given by

$$P(\mathbf{x}) = \sum_{|lpha| \leq n} \mathbf{x}^{lpha}$$

A homogeneous polynomial of degree n in \mathbb{K}^m is given by

$$P(\mathbf{x}) = \sum_{|\alpha|=n} \mathbf{x}^{\alpha}.$$

Polynomials on a normed space

Definition (Polynomials in infinitely many variables)

If *E* is a vector space (possible infinite dimensional), we say that $P: E \to \mathbb{K}$ is an *n*-homogeneous polynomial on *E* if there exists an *n*-linear form *L* on *E* such that for all $x \in E$

$$P(x) = L(x,\ldots,x).$$

A polynomial P of degree at most n on E is defined as

$$P = P_n + \dots + P_1 + P_0,$$

where the P_k 's are k-homogeneous and $P_0 \in \mathbb{K}$.

Polynomials on a normed space

Theorem

 $P: E \to \mathbb{K}$ is a polynomial of degree at most n (n-homogeneous) if and only if for any choice $e_1, \ldots e_m \in E$

$$\mathbb{K}^m \ni (x_1,\ldots,x_m) \mapsto P(x_1e_1+\cdots+x_me_m),$$

is a polynomial of degree at most n (n-homogeneous) in \mathbb{K}^m .

Theorem (Polarization Formula)

If P is an n-homogeneous polynomial on E then there exists a unique symmetric n-linear form on E (the polar of P) such that P(x) = L(x, ..., x) for all $x \in E$. Moreover

$$L(x_1,\ldots,x_n)=\frac{1}{2^n n!}\sum_{\epsilon_i=\pm 1}P(\epsilon_1x_1+\cdots+\epsilon_nx_n).$$

Polynomials on a normed space

Theorem

A polynomial P (resp. a multilinear form L) on a normed space E is continuous if and only if P (resp. L) is bounded on the unit ball of E.

We use the standard notations $\mathcal{P}({}^{n}E)$, $\mathcal{L}({}^{n}E)$ and $\mathcal{L}^{s}({}^{n}E)$ endowed with the sup norm over the unit ball of E.

Theorem (Martin, 1932)

If $P \in \mathcal{P}({}^{n}E)$ and $L \in \mathcal{L}^{s}({}^{n}E)$ is its polar then

$$|L\| \leq \frac{n^n}{n!} \|P\|,$$

and the constant cannot generally be improved.

A characterization of continuity for polynomials

Theorem (Gámez, Muñoz, Pellegrino, and Seoane (2011))

If E is a normed space and P is a polynomial on E then P is continuous if and only it transforms compact sets into compact sets.

Sketch of the proof

• Suppose $\lim_n x_n = 0$ but $\lim_n P(x_n) = a \neq 0$.

2 Two possibilities are plausible:

•
$$P(x_n) \neq a$$
 for infinitely many *n*'s:

• $\exists (y_n)$ a subsequence such that $P(y_n) \neq a$ for all *n*'s.

 $C := \{y_n\} \cup \{0\} \text{ is compact but } P(C) \text{ is not.}$

• Assume that $P(x_n) = a$ for all n.

• $\exists (y_n)$ with $P(y_n) \neq a \forall n$, $\lim_n P(y_n) = a$ and $\lim_n y_n = 0$.

Q Again, $C := \{y_n\} \cup \{0\}$ is compact but P(C) is not.

A characterization of continuity for polynomials

Theorem (Gámez, Muñoz, Pellegrino, and Seoane (2011))

If E is a normed space and $P \in \mathcal{P}(^{n}E)$ with n = 1, 2, then P is continuous if and only it is connected.

Sketch of the proof for 2-homogeneous polynomials

- Suppose $\lim x_n = 0$ but $P(x_n) \uparrow \infty$ with $P(x_1) > 0$.
- **2** Consider the connected set $C := (\bigcup_{n=1}^{\infty} [x_n, x_{n+1}]) \cup \{0\}.$

$$P([x_n, x_{n+1}]) \subset [P(x_n), \infty)$$

• $P(C) = [P(x_1), \infty) \cup \{0\}$ which is not connected!!

Conjecture

A polynomial P on a normed space E is continuous if and only if it transforms connected sets into connected sets.

A characterization of continuity for multilinear forms

Corollary (Gámez, Muñoz, Pellegrino, and Seoane (2011))

An *n*-linear form *L* on a normed space *E* is continuous if and only if it transforms connected set in E^n into connected sets in \mathbb{R} .

Theorem (Gámez, Muñoz, Pellegrino, and Seoane (2011))

If $n \in \mathbb{N}$ and E is a normed space of infinite dimension λ , then the sets of the non-bounded *n*-linear forms, the non-bounded *n*-linear symmetric forms, the *n*-homogeneous polynomials and the polynomials of degree at most *n* on E are 2^{λ} -lineable.