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A characterization of continuity

Theorem

If f : R→ R is continuous then

1 f transforms connected sets into connected sets.

2 f transforms compact sets into compact sets.

Theorem

If f : R→ R is a function such that

1 f transforms connected sets into connected sets,

2 f transforms compact sets into compact sets, and

then f is necessarily continuous.
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A characterization of continuity

Motivation for the generalization

A function f : R→ R is continuous in R if and only if

f −1(U) is open for all open set U ⊂ R.

Is the previous definition equivalent to

f (U) is open for all open set U ⊂ R?

Obviously, the answer is NO, but:

Is there a family F of subsets of R such that

f is continuous if and only if f (U) ∈ F for all U ∈ F .

The answer again is no, but the result is highly nontrivial.
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A characterization of continuity

Theorem (Velleman (1997))

There are not families F and G of subsets of R such that

f : R→ R is continuous if and only if f (U) ∈ G for all U ∈ F .

Theorem (Velleman (1997), Hamlett (1975), White (1968))

There are two families F and G of subsets of R such that
f : R→ R is continuous if and only if

1 f (U) ∈ F for all U ∈ F , and

2 f (V ) ∈ G for all V ∈ G.
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A characterization of continuity

The characterization again

A plausible choice for F and G in the previous theorem is the
following:

1 F is the family of all connected subsets of R (the intervals),
and

2 G is the family of all compact subsets of R.

A generalization of the characterization

1 The same result holds for functions f : X → Y where X is
first countable and locally connected and Y is regular.

2 However the result is not true for functions between metric
spaces in general.
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Derivatives as connected functions

Taken from a test for Analysis I students

Let f be differentiable in I = (a, b) and c ∈ I . Then:

(a) f is uniformly continuous I .

(b) lim
x→c

f ′(x) = f ′(c).

(c) f ′(I ) is an interval.

(d) None of the previous answers are correct.
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Outcome of the test question
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Derivatives as connected functions

Theorem (Darboux)

If f : R→ R is differentiable, then f ′ is a Darboux functions, i.e.,
f ′ transforms intervals into intervals.

Derivatives are not necessarily continuous

The derivative of

G (x) =

{
x2 sin 1

x2 if x 6= 0,

0 if x = 0,

is not continuous at 0.
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The graph of G (x)
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The graph of G ′(x)
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Derivative with uncountably many discontinuities

Volterra construction

1 Choose x0 > 0 so that G ′(x0) = 0.

2 Define G0 : (0, 2x0)→ R as follows:

G0(x) =

{
G (x) if x ∈ (0, x0],

G (2x0 − x) if x ∈ [x0, 2x0).

3 Using translations and homothetic transformations of G0, F
coincides with a copy of G0 in every interval (a, b) of
[0, 1] \ C , where C is the Cantor set.

4 We put F (x) = 0 for all x ∈ C .

5 F is differentiable in [0, 1] but F ′ is not continuous in C .
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Visual Volterra construction
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Visual Volterra construction
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Visual Volterra construction: G0
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Visual Volterra construction: Replication of G0
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Visual Volterra construction: Replication of G0
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Function whose derivative has uncountably many
discontinuities
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Derivative with uncountably many discontinuities
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More about Volterra constructions

Remark

1 The Volterra construction goes back to 1881.

2 If ε ∈ [0, 1), there is a Volterra type construction Fε over any
Cantor type set in [0, 1] of measure ε.

3 The function F ′ is not Riemann integrable if we choose a
Cantor set of positive measure.

4 If E ⊂ [0, 1] is nowhere dense, then there is a Volterra type
construction in [0, 1] whose derivative is discontinuous in E .

Theorem

If A ⊂ [0, 1] is a dense Gδ set then there exists f : [0, 1]→ R such
that f ′ is continuous in A and discontinuous in [0, 1] \ A.
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More about Volterra constructions

Sketch of the proof

1 [0, 1] \ A = ∪∞n=1En with En nowhere dense.

2 Consider Fn a Volterra construction for En with oscillation 1
at all points of En.

3 f =
∑∞

n=1
Fn
2n is the desired function.

Theorem

1 The set of continuity points of a function in [0, 1] is a Gδ set.

2 The set of continuity points of a derivative in [0, 1] is a dense
Gδ set.

Corollary

A set A ⊂ [0, 1] is the set of continuity points of a derivative
defined on [0, 1] if and only if A is a dense Gδ set.
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Pompeiu derivatives

Definition

A Pompeiu derivative in [0, 1] is a derivative with a dense set of
zeros.

Remark

1 If f : [0, 1]→ R is a Pompeiu derivative, x0 ∈ [0, 1] and
f ′(x0) 6= 0, then f ′ is not continuous at x0.

2 In principle, Pompeiu derivatives do not necessarily have many
discontinuities.

3 Pompeiu managed to construct a non null Pompeiu derivative
in 1907.

Theorem

The bounded Pompeiu derivatives on [0, 1] form a Banach space
with he uniform norm.
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Pompeiu’s original example (1907)

Pompeiu derivative with many discontinuities

1 Let {rn : n ∈ N} an ordering of [0, 1] ∩Q.

2 Let
∑∞

n=1 αn be a convergent series of positive real numbers.

3 Define g(x) =
∑∞

n=1 αn(x − rn)
1
3 in [0, 1].

4 g is continuous and strictly increasing.

5 g ′(x) =
∑∞

n=1
1
3αn(x − rn)−

2
3 > 0 whenever the sum is finite.

6 g ′(x) =∞ whenever
∑∞

n=1
1
3αn(x − rn)−

2
3 =∞.

7 In particular g ′(rn) =∞.

8 Normalize g by defining G (x) = g(x)−g(0)
g(1)−g(0) in [0, 1].

9 Define F = G−1 on [0, 1].

10 F is everywhere differentiable in [0, 1] and F ′(rn) = 0.

11 Hence F ′ is a Pompeiu derivative.
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Graph of the Pompeiu’s original example
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Derivatives that are discontinuous almost everywhere

Definition (Aron, Gurariy, and Seoane (2004))

A subset V of a linear space E is λ-lineable if V ∪ {0} contains a
linear space of dimension λ.

Theorem (Gámez, Muñoz, Sánchez, and Seoane (2010))

The set of differentiable functions on R whose derivatives are
discontinuous almost everywhere is c-lineable.

Corollary

The set of functions f : R→ R that transform connected sets into
connected sets and are discontinuous almost everywhere is
c-lineable.
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Derivatives that are discontinuous almost everywhere

Definition

Let E ⊂ R. We say that x ∈ R is a point of density of E if

lim inf
ε→0+

m(E ∩ (x − ε, x + ε))

2ε
= 1,

where m stands for the Lebesgue measure on R. We denote

dens E = { x ∈ R : x is a density point of E }.

Definition

We say that f : R→ R is approximately continuous at x0 ∈ R, if
there exists E ⊂ R such that x0 ∈ dens E and

lim
x→x0
x∈E

f (x) = f (x0).
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Derivatives that are discontinuous almost everywhere

Lemma (Zahorki)

There exists an approximately continuous mapping f0 : R→ [0, 1]
satisfying the following properties:

1 Zf0 is a Gδ, dense set with Lebesgue measure zero.

2 f0 is discontinuous at every x ∈ R \ Zf0 .

Theorem (Gámez, Muñoz, Sánchez, and Seoane (2010))

The set of bounded approximately continuous mappings defined on
R that are discontinuous almost everywhere is c-lineable.

Sketch of the proof

The set {f0(x)e−α|x | : α ∈ (0,∞)} is a basis of cardinality c.
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Derivatives that are discontinuous almost everywhere

Theorem

All bounded approximately continuous functions on R are
derivatives.

Corollary (Gámez, Muñoz, Sánchez, and Seoane (2010))

The set of bounded Pompeiu derivatives on R that are
discontinuous almost everywhere is c-lineable.
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Everywhere surjective functions

Definition

A function f : R→ R is everywhere surjective if f (I ) = R for all
nontrivial interval I .

Theorem (Aron, Gurariy, and Seoane (2004))

The set of everywhere surjective functions on R is 2c-lineable.

Corollary

The set of functions f : R→ R that transform connected sets into
connected sets and are discontinuous everywhere is 2c-lineable.
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Functions that transform compact sets into compact sets

Theorem (Gámez, Muñoz, and Seoane (2011))

The set of functions f : R→ R that have finite range (and hence
transform any set into a compact set) and are everywhere
discontinuous is 2c-lineable.

Sketch of proof

Let H be a Hamel basis of R over Q.

Let ϕ : R→ RN a Q-linear isomorphism.

For all A ⊂ H we define fA(x) := χ([A]\{0})N(ϕ(x)), for all
x ∈ R.

Choose h0 ∈ H and consider
F = {fA : ∅ 6= A ∈ P(H), h0 /∈ A}. Then F is linearly
independent and its cardinality is 2c.
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Polynomials in finite variables

Multiindex: α = (α1, . . . , αm) ∈ (N ∪ {0})m.

Trace of a multiindex: |α| = α1 + · · ·+ αm.

Monomial xα := xα1
1 · · · xαm

m , where x = (x1, . . . , xm) ∈ Km.

Definition (Polynomials on Km)

A polynomial of degree at most n in Km is given by

P(x) =
∑
|α|≤n

xα.

A homogeneous polynomial of degree n in Km is given by

P(x) =
∑
|α|=n

xα.
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Polynomials on a normed space

Definition (Polynomials in infinitely many variables)

If E is a vector space (possible infinite dimensional), we say that
P : E → K is an n-homogeneous polynomial on E if there exists an
n-linear form L on E such that for all x ∈ E

P(x) = L(x , . . . , x).

A polynomial P of degree at most n on E is defined as

P = Pn + · · ·+ P1 + P0,

where the Pk ’s are k-homogeneous and P0 ∈ K.
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Polynomials on a normed space

Theorem

P : E → K is a polynomial of degree at most n (n-homogeneous)
if and only if for any choice e1, . . . em ∈ E

Km 3 (x1, . . . , xm) 7→ P(x1e1 + · · ·+ xmem),

is a polynomial of degree at most n (n-homogeneous) in Km .

Theorem (Polarization Formula)

If P is an n-homogeneous polynomial on E then there exists a
unique symmetric n-linear form on E (the polar of P) such that
P(x) = L(x , . . . , x) for all x ∈ E . Moreover

L(x1, . . . , xn) =
1

2nn!

∑
εi=±1

P(ε1x1 + · · ·+ εnxn).
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Polynomials on a normed space

Theorem

A polynomial P (resp. a multilinear form L) on a normed space E
is continuous if and only if P (resp. L) is bounded on the unit ball
of E .

We use the standard notations P(nE ), L(nE ) and Ls(nE )
endowed with the sup norm over the unit ball of E .

Theorem (Martin, 1932)

If P ∈ P(nE ) and L ∈ Ls(nE ) is its polar then

‖L‖ ≤ nn

n!
‖P‖,

and the constant cannot generally be improved.
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A characterization of continuity for polynomials

Theorem (Gámez, Muñoz, Pellegrino, and Seoane (2011))

If E is a normed space and P is a polynomial on E then P is
continuous if and only it transforms compact sets into compact
sets.

Sketch of the proof

1 Suppose limn xn = 0 but limn P(xn) = a 6= 0.

2 Two possibilities are plausible:
3 P(xn) 6= a for infinitely many n’s:

1 ∃(yn) a subsequence such that P(yn) 6= a for all n’s.
2 C := {yn} ∪ {0} is compact but P(C ) is not.

4 Assume that P(xn) = a for all n.

1 ∃(yn) with P(yn) 6= a ∀n, limn P(yn) = a and limn yn = 0.
2 Again, C := {yn} ∪ {0} is compact but P(C ) is not.
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A characterization of continuity for polynomials

Theorem (Gámez, Muñoz, Pellegrino, and Seoane (2011))

If E is a normed space and P ∈ P(nE ) with n = 1, 2, then P is
continuous if and only it is connected.

Sketch of the proof for 2-homogeneous polynomials

1 Suppose lim xn = 0 but P(xn) ↑ ∞ with P(x1) > 0.

2 Consider the connected set C := (
⋃∞

n=1[xn, xn+1]) ∪ {0}.
3 P([xn, xn+1]) ⊂ [P(xn),∞).

4 P(C ) = [P(x1),∞) ∪ {0} which is not connected!!

Conjecture

A polynomial P on a normed space E is continuous if and only if it
transforms connected sets into connected sets.
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A characterization of continuity for multilinear forms

Corollary (Gámez, Muñoz, Pellegrino, and Seoane (2011))

An n-linear form L on a normed space E is continuous if and only
if it transforms connected set in En into connected sets in R.

Theorem (Gámez, Muñoz, Pellegrino, and Seoane (2011))

If n ∈ N and E is a normed space of infinite dimension λ, then the
sets of the non-bounded n-linear forms, the non-bounded n-linear
symmetric forms, the n-homogeneous polynomials and the
polynomials of degree at most n on E are 2λ-lineable.
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