Generic boundary behaviour for harmonic functions in the ball

Frédéric Bayart and Yanick Heurteaux

Laboratoire de Mathématiques - Université Blaise Pascal, Clermont-Ferrand

Domaine du Rond-Chêne, May 2015

• If $f \in L^p(\mathbb{T})$, p > 1, $S_n f(x) = \sum_{k=-n}^n \hat{f}(k) e^{inx}$ is almost surely convergent but there are possible divergence points.

- If $f \in L^p(\mathbb{T})$, p > 1, $S_n f(x) = \sum_{k=-n}^n \hat{f}(k) e^{inx}$ is almost surely convergent but there are possible divergence points.
- For a given β , what is the size of the set of points x for which $|S_n f(x)| \gg n^{\beta}$ i.o. ?

- If $f \in L^p(\mathbb{T})$, p > 1, $S_n f(x) = \sum_{k=-n}^n \hat{f}(k) e^{inx}$ is almost surely convergent but there are possible divergence points.
- For a given β , what is the size of the set of points x for which $|S_n f(x)| \gg n^{\beta}$ i.o. ?
- What is the behaviour of $S_n f$ for a generic function $f \in L^p$?

- If $f \in L^p(\mathbb{T})$, p > 1, $S_n f(x) = \sum_{k=-n}^n \hat{f}(k) e^{inx}$ is almost surely convergent but there are possible divergence points.
- For a given β , what is the size of the set of points x for which $|S_n f(x)| \gg n^{\beta}$ i.o. ?
- What is the behaviour of $S_n f$ for a generic function $f \in L^p$?
- Let $\beta(x)$ be the supremum of the *beta* such that $|S_n f(x)| \gg n^{\beta}$ i.o. and $E(f, \beta) = \{x \in \mathbb{T} ; \beta(x) = \beta\}$.

- If $f \in L^p(\mathbb{T})$, p > 1, $S_n f(x) = \sum_{k=-n}^n \hat{f}(k) e^{inx}$ is almost surely convergent but there are possible divergence points.
- For a given β , what is the size of the set of points x for which $|S_n f(x)| \gg n^{\beta}$ i.o. ?
- What is the behaviour of $S_n f$ for a generic function $f \in L^p$?
- Let $\beta(x)$ be the supremum of the *beta* such that $|S_n f(x)| \gg n^{\beta}$ i.o. and $E(f, \beta) = \{x \in \mathbb{T} ; \beta(x) = \beta\}$. If f is a generic function in $L^p(\mathbb{T})$,

for any
$$eta \in [0,1/p], \quad \dim_{\mathcal{H}}(E(eta,f)) = 1-eta p.$$
 (Bayart, H., 2011)

- If $f \in L^p(\mathbb{T})$, p > 1, $S_n f(x) = \sum_{k=-n}^n \hat{f}(k) e^{inx}$ is almost surely convergent but there are possible divergence points.
- For a given β , what is the size of the set of points x for which $|S_n f(x)| \gg n^{\beta}$ i.o. ?
- What is the behaviour of $S_n f$ for a generic function $f \in L^p$?
- Let $\beta(x)$ be the supremum of the *beta* such that $|S_n f(x)| \gg n^{\beta}$ i.o. and $E(f, \beta) = \{x \in \mathbb{T} ; \beta(x) = \beta\}$. If f is a generic function in $L^p(\mathbb{T})$,

$$\text{for any } \beta \in [0,1/p], \quad \dim_{\mathcal{H}}(E(\beta,f)) = 1-\beta p.$$

(Bayart, H., 2011)

• What about $P_r * f(x) = \sum_{k=-\infty}^{+\infty} r^{|k|} \hat{f}(k) e^{ikx}$ when $r \to 1$?

- If $f \in L^p(\mathbb{T})$, p > 1, $S_n f(x) = \sum_{k=-n}^n \hat{f}(k) e^{inx}$ is almost surely convergent but there are possible divergence points.
- For a given β , what is the size of the set of points x for which $|S_n f(x)| \gg n^{\beta}$ i.o. ?
- What is the behaviour of $S_n f$ for a generic function $f \in L^p$?
- Let $\beta(x)$ be the supremum of the *beta* such that $|S_n f(x)| \gg n^{\beta}$ i.o. and $E(f, \beta) = \{x \in \mathbb{T} ; \beta(x) = \beta\}$. If f is a generic function in $L^p(\mathbb{T})$,

$$\text{for any }\beta\in[0,1/p],\quad \dim_{\mathcal{H}}(E(\beta,f))=1-\beta p.$$

(Bayart, H., 2011)

- What about $P_r * f(x) = \sum_{k=-\infty}^{+\infty} r^{|k|} \hat{f}(k) e^{ikx}$ when $r \to 1$?
- $h(re^{ix}) = P_r * f(x)$ is harmonic in the unit disk.

- If $f \in L^p(\mathbb{T})$, p > 1, $S_n f(x) = \sum_{k=-n}^n \hat{f}(k) e^{inx}$ is almost surely convergent but there are possible divergence points.
- For a given β , what is the size of the set of points x for which $|S_n f(x)| \gg n^{\beta}$ i.o. ?
- What is the behaviour of $S_n f$ for a generic function $f \in L^p$?
- Let $\beta(x)$ be the supremum of the *beta* such that $|S_n f(x)| \gg n^{\beta}$ i.o. and $E(f, \beta) = \{x \in \mathbb{T} ; \beta(x) = \beta\}$. If f is a generic function in $L^p(\mathbb{T})$,

for any
$$\beta \in [0, 1/p]$$
, $\dim_{\mathcal{H}}(E(\beta, f)) = 1 - \beta p$.

(Bayart, H., 2011)

- What about $P_r * f(x) = \sum_{k=-\infty}^{+\infty} r^{|k|} \hat{f}(k) e^{ikx}$ when $r \to 1$?
- $h(re^{ix}) = P_r * f(x)$ is harmonic in the unit disk.
- $r \rightarrow 1$ corresponds to the radial convergence in the disk.

The Poisson kernel:

$$P(x,\xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

The Poisson kernel:

$$P(x,\xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

Bounded harmonic functions

The Poisson kernel:

$$P(x,\xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

Bounded harmonic functions

$$h(x) = P[f](x) = \int_{\mathcal{S}_d} P(x,\xi) f(\xi) d\sigma(\xi)$$
 with $f \in L^{\infty}(\mathcal{S}_d)$

The Poisson kernel:

$$P(x,\xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

Bounded harmonic functions

$$h(x) = P[f](x) = \int_{\mathcal{S}_d} P(x,\xi) f(\xi) d\sigma(\xi)$$
 with $f \in L^{\infty}(\mathcal{S}_d)$

Nonnegative harmonic functions

The Poisson kernel:

$$P(x,\xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

Bounded harmonic functions

$$h(x) = P[f](x) = \int_{\mathcal{S}_d} P(x,\xi) f(\xi) d\sigma(\xi)$$
 with $f \in L^{\infty}(\mathcal{S}_d)$

Nonnegative harmonic functions

$$h(x) = P[\mu](x) = \int_{\mathcal{S}_d} P(x,\xi) \, d\mu(\xi)$$
 with $\mu \in \mathcal{M}^+(\mathcal{S}_d)$

The Poisson kernel:

$$P(x,\xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

Bounded harmonic functions

$$h(x) = P[f](x) = \int_{\mathcal{S}_d} P(x,\xi) f(\xi) d\sigma(\xi)$$
 with $f \in L^{\infty}(\mathcal{S}_d)$

Nonnegative harmonic functions

$$h(x) = P[\mu](x) = \int_{\mathcal{S}_d} P(x,\xi) \, d\mu(\xi)$$
 with $\mu \in \mathcal{M}^+(\mathcal{S}_d)$

Harmonic functions with L¹ data

The Poisson kernel:

$$P(x,\xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

Bounded harmonic functions

$$h(x) = P[f](x) = \int_{\mathcal{S}_d} P(x,\xi) f(\xi) d\sigma(\xi)$$
 with $f \in L^{\infty}(\mathcal{S}_d)$

Nonnegative harmonic functions

$$h(x) = P[\mu](x) = \int_{\mathcal{S}_d} P(x,\xi) \, d\mu(\xi)$$
 with $\mu \in \mathcal{M}^+(\mathcal{S}_d)$

Harmonic functions with L¹ data

$$h(x) = P[f](x) = \int_{\mathcal{S}_d} P(x,\xi) f(\xi) d\sigma(\xi) \quad \text{with} \quad f \in L^1(\mathcal{S}_d)$$

• Fatou (1906) : if $f \in L^{\infty}(\mathbb{T})$, then

$$P_r * f(x) \rightarrow f(x)$$
 almost surely.

• Fatou (1906) : if $f \in L^\infty(\mathbb{T})$, then $P_r * f(x) \to f(x) \quad \text{almost surely}.$

Generalizations (Hardy-Littlewood, Wiener, Bochner...)

$$P[\mu](ry) o rac{d\mu}{d\sigma}(y)$$
 $d\sigma$ -almost surely when $r o 1$.

• Fatou (1906) : if $f \in L^\infty(\mathbb{T})$, then $P_r * f(x) \to f(x) \quad \text{almost surely}.$

Generalizations (Hardy-Littlewood, Wiener, Bochner...)

$$P[\mu](ry)
ightarrow rac{d\mu}{d\sigma}(y) \quad d\sigma$$
-almost surely when $r
ightarrow 1$.

• Hunt and Wheeden (1970): If h is a nonnegative harmonic function in a Lipschitz domain $U \subset \mathbb{R}^n$, then h has a non tangential limit at almost every point of the boundary ∂U .

Question

Let $y \in \mathcal{S}_d$ such that P[f](ry) diverges. How quick can be the divergence of P[f](ry) ?

Question

Let $y \in \mathcal{S}_d$ such that P[f](ry) diverges. How quick can be the divergence of P[f](ry) ?

An elementary upper bound:

Question

Let $y \in \mathcal{S}_d$ such that P[f](ry) diverges. How quick can be the divergence of P[f](ry) ?

An elementary upper bound:

$$|P[f](ry)| = \left| \int_{\mathcal{S}_d} \frac{1 - ||ry||^2}{||ry - \xi||^{d+1}} f(\xi) d\sigma(\xi) \right|$$

Question

Let $y \in \mathcal{S}_d$ such that P[f](ry) diverges. How quick can be the divergence of P[f](ry) ?

An elementary upper bound:

$$|P[f](ry)| = \left| \int_{\mathcal{S}_d} \frac{1 - ||ry||^2}{||ry - \xi||^{d+1}} f(\xi) d\sigma(\xi) \right| \le \frac{2||f||_1}{(1 - r)^d}$$

Question

Let $y \in \mathcal{S}_d$ such that P[f](ry) diverges. How quick can be the divergence of P[f](ry) ?

An elementary upper bound:

$$|P[f](ry)| = \left| \int_{\mathcal{S}_d} \frac{1 - ||ry||^2}{||ry - \xi||^{d+1}} f(\xi) d\sigma(\xi) \right| \le \frac{2||f||_1}{(1 - r)^d}$$

Question

Let $\beta \in (0, d]$. What is the size of the set of points y such that $|P[f](ry)| \approx (1-r)^{-\beta}$ when $r \to 1$?

$$0 < \beta < d$$

$$\mathcal{E}(\beta, f) = \left\{ y \in \mathcal{S}_d; \ \limsup_{r \to 1} \frac{|P[f](ry)|}{(1 - r)^{-\beta}} = +\infty \right\}$$

$$0 < \beta < d$$

$$\mathcal{E}(\beta, f) = \left\{ y \in \mathcal{S}_d; \lim \sup_{r \to 1} \frac{|P[f](ry)|}{(1 - r)^{-\beta}} = +\infty \right\}$$

Theorem (Bayart, H.)

• For any
$$f \in L^1(\mathcal{S}_d)$$
, $\dim_{\mathcal{H}} (\mathcal{E}(\beta, f)) \leq d - \beta$.

 $0 < \beta < d$

$$\mathcal{E}(\beta, f) = \left\{ y \in \mathcal{S}_d; \lim \sup_{r \to 1} \frac{|P[f](ry)|}{(1 - r)^{-\beta}} = +\infty \right\}$$

Theorem (Bayart, H.)

- For any $f \in L^1(\mathcal{S}_d)$, $\dim_{\mathcal{H}} (\mathcal{E}(\beta, f)) \leq d \beta$.
- If $E \subset S_d$ is such that $\dim_{\mathcal{H}}(E) < d \beta$, there exists $f \in L^1(S_d)$ such that $E \subset \mathcal{E}(\beta, f)$.

 $0 < \beta < d$

$$\mathcal{E}(\beta, f) = \left\{ y \in \mathcal{S}_d; \lim \sup_{r \to 1} \frac{|P[f](ry)|}{(1 - r)^{-\beta}} = +\infty \right\}$$

Theorem (Bayart, H.)

- For any $f \in L^1(\mathcal{S}_d)$, $\dim_{\mathcal{H}} (\mathcal{E}(\beta, f)) \leq d \beta$.
- If $E \subset S_d$ is such that $\dim_{\mathcal{H}}(E) < d \beta$, there exists $f \in L^1(S_d)$ such that $E \subset \mathcal{E}(\beta, f)$.

The first part was already obtained by Armitage (1981) in the context of the half upper space.

Let τ be a nonnegative nonincreasing function such that

$$au(s) pprox au(2s), \quad \lim_{s o 0^+} au(s) = +\infty \quad ext{and} \quad au(s) \ll s^{-d}.$$

Let τ be a nonnegative nonincreasing function such that

$$au(s) pprox au(2s), \quad \lim_{s o 0^+} au(s) = +\infty \quad ext{and} \quad au(s) \ll s^{-d}.$$

Define

$$\mathcal{E}(\tau, f) = \left\{ y \in \mathcal{S}_d; \lim \sup_{r \to 1} \frac{|P[f](ry)|}{\tau(1 - r)} = +\infty \right\}$$

Let τ be a nonnegative nonincreasing function such that

$$au(s) pprox au(2s), \quad \lim_{s o 0^+} au(s) = +\infty \quad ext{and} \quad au(s) \ll s^{-d}.$$

Define

$$\mathcal{E}(\tau, f) = \left\{ y \in \mathcal{S}_d; \lim \sup_{r \to 1} \frac{|P[f](ry)|}{\tau(1 - r)} = +\infty \right\}$$

and the gauge function ϕ by $\phi(s) = \tau(s)s^d$.

Let τ be a nonnegative nonincreasing function such that

$$au(s) pprox au(2s), \quad \lim_{s o 0^+} au(s) = +\infty \quad ext{and} \quad au(s) \ll s^{-d}.$$

Define

$$\mathcal{E}(\tau, f) = \left\{ y \in \mathcal{S}_d; \lim \sup_{r \to 1} \frac{|P[f](ry)|}{\tau(1 - r)} = +\infty \right\}$$

and the gauge function ϕ by $\phi(s) = \tau(s)s^d$.

Theorem (Bayart, H.)

• For any $f \in L^1(\mathcal{S}_d)$, $\mathcal{H}^\phiig(\mathcal{E}(au,f)ig)=0$.

A more precise result

Let τ be a nonnegative nonincreasing function such that

$$au(s) pprox au(2s), \quad \lim_{s o 0^+} au(s) = +\infty \quad ext{and} \quad au(s) \ll s^{-d}.$$

Define

$$\mathcal{E}(\tau, f) = \left\{ y \in \mathcal{S}_d; \lim \sup_{r \to 1} \frac{|P[f](ry)|}{\tau(1 - r)} = +\infty \right\}$$

and the gauge function ϕ by $\phi(s) = \tau(s)s^d$.

Theorem (Bayart, H.)

- For any $f \in L^1(\mathcal{S}_d)$, $\mathcal{H}^\phiig(\mathcal{E}(au,f)ig)=0$.
- If $E \subset S_d$ is such that $\mathcal{H}^{\phi}(E) = 0$, there exists $f \in L^1(S_d)$ such that $E \subset \mathcal{E}(\tau, f)$.

$$P[\mu](x) = \int_{\mathcal{S}_d} P(x,\xi) \, d\mu(\xi)$$

$$P[\mu](x) = \int_{\mathcal{S}_d} P(x,\xi) \, d\mu(\xi)$$

$$\sup_{r \in (0,1)} |P[\mu](ry)| \le \sup_{\delta > 0} \frac{|\mu|(\kappa(y,\delta))}{\sigma(\kappa(y,\delta))}$$

where
$$\kappa(y, \delta) = \{ \xi \in \mathcal{S}_d; \|\xi - y\| < \delta \}.$$

$$P[\mu](x) = \int_{\mathcal{S}_d} P(x,\xi) \, d\mu(\xi)$$

$$\sup_{r \in (0,1)} |P[\mu](ry)| \le \sup_{\delta > 0} \frac{|\mu|(\kappa(y,\delta))}{\sigma(\kappa(y,\delta))}$$

where $\kappa(y, \delta) = \{ \xi \in \mathcal{S}_d; \|\xi - y\| < \delta \}.$ $\kappa(y, \delta)$ is called a cap.

$$P[\mu](x) = \int_{\mathcal{S}_d} P(x,\xi) \, d\mu(\xi)$$

$$\sup_{r \in (0,1)} |P[\mu](ry)| \le \sup_{\delta > 0} \frac{|\mu|(\kappa(y,\delta))}{\sigma(\kappa(y,\delta))}$$

where $\kappa(y, \delta) = \{ \xi \in \mathcal{S}_d; \|\xi - y\| < \delta \}.$ $\kappa(y, \delta)$ is called a cap.

Lemma (a quantitative improvement)

Let 0 < r < 1. There exists $\delta \ge 1 - r$ such that

$$|P[\mu](ry)| \leq C \frac{|\mu|(\kappa(y,\delta))}{\sigma(\kappa(y,\delta))},$$

where C is a constant independent of μ , r and y.

Dimension of $\mathcal{E}(\beta,\mu)$: the upper bound $au(s)=s^{-\beta}.$

$$\tau(s)=s^{-\beta}.$$

$$\mathcal{E}(\beta,\mu) = \left\{ y \in \mathcal{S}_d; \ \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1-r)^{-\beta}} = +\infty \right\}$$

$$\tau(s)=s^{-\beta}.$$

$$\mathcal{E}(\beta,\mu) = \left\{ y \in \mathcal{S}_d; \ \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1-r)^{-\beta}} = +\infty \right\}$$

$$\mathcal{E}_M = \left\{ y \in \mathcal{S}_d; \lim \sup_{r \to 1} \frac{|P[\mu](ry)|}{(1-r)^{-\beta}} > M \right\}.$$

$$\tau(s)=s^{-\beta}.$$

$$\mathcal{E}(\beta,\mu) = \left\{ y \in \mathcal{S}_d; \ \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1-r)^{-\beta}} = +\infty \right\}$$

$$\mathcal{E}_{M} = \left\{ y \in \mathcal{S}_{d}; \ \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1-r)^{-\beta}} > M \right\}.$$

Let $y \in \mathcal{E}_M$. Using the previous lemma, we can find r_y as close to 1 as we want and a cap $\kappa_y = \kappa(y, \delta_y)$ with $\delta_y \ge 1 - r_y$

$$M(1-r_y)^{-\beta} < |P[\mu](r_y y)| \le C \frac{|\mu|(\kappa_y)}{\sigma(\kappa_y)}.$$

$$\tau(s)=s^{-\beta}.$$

$$\mathcal{E}(\beta,\mu) = \left\{ y \in \mathcal{S}_d; \ \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1-r)^{-\beta}} = +\infty \right\}$$

$$\mathcal{E}_M = \left\{ y \in \mathcal{S}_d; \ \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1-r)^{-\beta}} > M \right\}.$$

Let $y \in \mathcal{E}_M$. Using the previous lemma, we can find r_y as close to 1 as we want and a cap $\kappa_y = \kappa(y, \delta_y)$ with $\delta_y \ge 1 - r_y$

$$M(1-r_y)^{-\beta} < |P[\mu](r_y y)| \le C \frac{|\mu|(\kappa_y)}{\sigma(\kappa_y)}.$$

 δ_y goes to 0 when r_y goes to 1.

$$(1-r_y)^{-\beta}\sigma(\kappa_y)<\frac{C}{M}|\mu|(\kappa_y).$$

$$(1-r_y)^{-\beta}\sigma(\kappa_y)<\frac{C}{M}|\mu|(\kappa_y).$$

$$(1-r_y)^{-\beta}\sigma(\kappa_y)<\frac{C}{M}|\mu|(\kappa_y).$$

$$\sum_{i} (1 - r_{y_i})^{-\beta} \sigma(\kappa_{y_i}) \le \frac{C}{M} \|\mu\|$$

$$(1-r_y)^{-\beta}\sigma(\kappa_y)<\frac{C}{M}|\mu|(\kappa_y).$$

$$\sum_{i} (1 - r_{y_i})^{-\beta} \sigma(\kappa_{y_i}) \le \frac{C}{M} \|\mu\|$$

$$\sum_{i} \delta_{y_i}^{d-\beta} \le \frac{C}{M} \|\mu\|$$

$$(1-r_y)^{-\beta}\sigma(\kappa_y)<\frac{C}{M}|\mu|(\kappa_y).$$

$$\sum_{i} (1 - r_{y_i})^{-\beta} \sigma(\kappa_{y_i}) \le \frac{C}{M} \|\mu\|$$
$$\sum_{i} \delta_{y_i}^{d-\beta} \le \frac{C}{M} \|\mu\|$$
$$\mathcal{H}^{d-\beta}(\mathcal{E}_M) \le \frac{C}{M} \|\mu\|$$

$$(1-r_y)^{-\beta}\sigma(\kappa_y)<\frac{C}{M}|\mu|(\kappa_y).$$

$$\sum_{i} (1 - r_{y_i})^{-\beta} \sigma(\kappa_{y_i}) \le \frac{C}{M} \|\mu\|$$

$$\sum_{i} \delta_{y_i}^{d-\beta} \le \frac{C}{M} \|\mu\|$$

$$\mathcal{H}^{d-\beta}(\mathcal{E}_M) \le \frac{C}{M} \|\mu\|$$

$$\mathcal{H}^{d-\beta}(\mathcal{E}(\beta, \mu)) = 0$$

Lower bound for the dimension: an elementary lemma

If
$$r > 1/2$$
,
$$\int_{\kappa(N,1-r)} P(rN,\xi) d\sigma(\xi) \ge C$$

Lower bound for the dimension: an elementary lemma

If
$$r > 1/2$$
,
$$\int_{\kappa(N,1-r)} P(rN,\xi) d\sigma(\xi) \geq C$$

Lower bound for the dimension : the construction Let E be such that $\mathcal{H}^{d-\beta}(E)=0$.

Let E be such that $\mathcal{H}^{d-\beta}(E)=0$. Let \mathcal{R}_j be a 2^{-j} -covering of E by caps such that

$$\sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \leq 2^{-j}.$$

Let E be such that $\mathcal{H}^{d-\beta}(E)=0$. Let \mathcal{R}_j be a 2^{-j} -covering of E by caps such that

$$\sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \le 2^{-j}.$$

Define

$$C_n = \left\{ \kappa \in \bigcup_j \mathcal{R}_j; \ 2^{-(n+1)} < |\kappa| \le 2^{-n} \right\}.$$

Let E be such that $\mathcal{H}^{d-\beta}(E)=0$. Let \mathcal{R}_j be a 2^{-j} -covering of E by caps such that

$$\sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \le 2^{-j}.$$

Define

$$C_n = \left\{ \kappa \in \bigcup_j \mathcal{R}_j; \ 2^{-(n+1)} < |\kappa| \le 2^{-n} \right\}.$$
$$\sum_{n \ge 1} \sum_{\kappa \in C_n} |\kappa|^{d-\beta} \le \sum_{j \ge 1} \sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \le 1.$$

Let E be such that $\mathcal{H}^{d-\beta}(E)=0$. Let \mathcal{R}_j be a 2^{-j} -covering of E by caps such that

$$\sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \le 2^{-j}.$$

Define

$$C_n = \left\{ \kappa \in \bigcup_j \mathcal{R}_j; \ 2^{-(n+1)} < |\kappa| \le 2^{-n} \right\}.$$
$$\sum_{n \ge 1} \sum_{\kappa \in C_n} |\kappa|^{d-\beta} \le \sum_{j \ge 1} \sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \le 1.$$

Choose $(\omega_n)_{n\geq 1}$ tending to infinity such that

$$\sum_{n>1}\omega_n\sum_{\kappa\in\mathcal{C}_n}|\kappa|^{d-\beta}<+\infty.$$

Let E be such that $\mathcal{H}^{d-\beta}(E)=0$. Let \mathcal{R}_j be a 2^{-j} -covering of E by caps such that

$$\sum_{\kappa \in \mathcal{R}_i} |\kappa|^{d-\beta} \le 2^{-j}.$$

Define

$$C_n = \left\{ \kappa \in \bigcup_j \mathcal{R}_j; \ 2^{-(n+1)} < |\kappa| \le 2^{-n} \right\}.$$
$$\sum_{n \ge 1} \sum_{\kappa \in C_n} |\kappa|^{d-\beta} \le \sum_{j \ge 1} \sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \le 1.$$

Choose $(\omega_n)_{n\geq 1}$ tending to infinity such that

$$\sum_{n\geq 1} \omega_n \sum_{\kappa \in \mathcal{C}} |\kappa|^{d-\beta} < +\infty.$$

Observe that $E\subset \limsup_n E_n$ where $E_n=\bigcup_{\kappa\in\mathcal{C}_n}\kappa$.

$$f = \sum_{n \ge 1} \omega_n 2^{-n\beta} \sum_{\kappa \in \mathcal{C}_n} \mathbb{1}_{4\kappa}$$

$$f = \sum_{n \ge 1} \omega_n 2^{-n\beta} \sum_{\kappa \in \mathcal{C}_n} \mathbb{1}_{4\kappa}$$

$$||f||_1 \le C \sum_{n \ge 1} \omega_n 2^{-n\beta} \sum_{\kappa \in \mathcal{C}_n} |\kappa|^d \le C \sum_{n \ge 1} \omega_n \sum_{\kappa \in \mathcal{C}_n} |\kappa|^{d-\beta} < +\infty.$$

$$f = \sum_{n \ge 1} \omega_n 2^{-n\beta} \sum_{\kappa \in \mathcal{C}_n} \mathbb{1}_{4\kappa}$$

$$||f||_1 \le C \sum_{n \ge 1} \omega_n 2^{-n\beta} \sum_{\kappa \in \mathcal{C}_n} |\kappa|^d \le C \sum_{n \ge 1} \omega_n \sum_{\kappa \in \mathcal{C}_n} |\kappa|^{d-\beta} < +\infty.$$

$$f = \sum_{n \ge 1} \omega_n 2^{-n\beta} \sum_{\kappa \in \mathcal{C}_n} \mathbb{1}_{4\kappa}$$

$$||f||_1 \le C \sum_{n \ge 1} \omega_n 2^{-n\beta} \sum_{\kappa \in \mathcal{C}_n} |\kappa|^d \le C \sum_{n \ge 1} \omega_n \sum_{\kappa \in \mathcal{C}_n} |\kappa|^{d-\beta} < +\infty.$$

$$P[f](ry) \geq \omega_n 2^{-n\beta} \int_{4\kappa_0} P(ry,\xi) d\sigma(\xi)$$

$$f = \sum_{n \ge 1} \omega_n 2^{-n\beta} \sum_{\kappa \in \mathcal{C}_n} \mathbb{1}_{4\kappa}$$

$$||f||_1 \le C \sum_{n \ge 1} \omega_n 2^{-n\beta} \sum_{\kappa \in \mathcal{C}_n} |\kappa|^d \le C \sum_{n \ge 1} \omega_n \sum_{\kappa \in \mathcal{C}_n} |\kappa|^{d-\beta} < +\infty.$$

$$P[f](ry) \geq \omega_n 2^{-n\beta} \int_{4\kappa_0} P(ry,\xi) \, d\sigma(\xi)$$
$$\geq \omega_n 2^{-n\beta} \int_{\kappa(y,2^{-n})} P(ry,\xi) \, d\sigma(\xi)$$

$$f = \sum_{n \ge 1} \omega_n 2^{-n\beta} \sum_{\kappa \in \mathcal{C}_n} \mathbb{1}_{4\kappa}$$

$$||f||_1 \le C \sum_{n \ge 1} \omega_n 2^{-n\beta} \sum_{\kappa \in \mathcal{C}_n} |\kappa|^d \le C \sum_{n \ge 1} \omega_n \sum_{\kappa \in \mathcal{C}_n} |\kappa|^{d-\beta} < +\infty.$$

$$P[f](ry) \geq \omega_n 2^{-n\beta} \int_{4\kappa_0} P(ry,\xi) \, d\sigma(\xi)$$

$$\geq \omega_n 2^{-n\beta} \int_{\kappa(y,2^{-n})} P(ry,\xi) \, d\sigma(\xi)$$

$$\geq C\omega_n (1-r)^{-\beta}.$$

Let $f \in L^1(\mathcal{S}_d)$ and $y_0 \in \mathcal{S}_d$.

$$\beta(y_0) = \inf \left(\beta ; |P[f](ry_0)| = O((1-r)^{-\beta}) \right)$$

Let $f \in L^1(\mathcal{S}_d)$ and $y_0 \in \mathcal{S}_d$.

$$\beta(y_0) = \inf \left(\beta ; |P[f](ry_0)| = O((1-r)^{-\beta}) \right)$$
$$= \limsup_{r \to 1} \frac{\log |P[f](ry_0)|}{-\log(1-r)}.$$

Let $f \in L^1(\mathcal{S}_d)$ and $y_0 \in \mathcal{S}_d$.

$$\beta(y_0) = \inf \left(\beta ; |P[f](ry_0)| = O((1-r)^{-\beta}) \right)$$

$$= \limsup_{r \to 1} \frac{\log |P[f](ry_0)|}{-\log(1-r)}.$$

Level sets:

$$E(\beta, f) = \{ y \in \mathcal{S}_d; \ \beta(y) = \beta \}$$
.

Let $f \in L^1(\mathcal{S}_d)$ and $y_0 \in \mathcal{S}_d$.

$$\beta(y_0) = \inf \left(\beta ; |P[f](ry_0)| = O((1-r)^{-\beta}) \right)$$

$$= \limsup_{r \to 1} \frac{\log |P[f](ry_0)|}{-\log(1-r)}.$$

Level sets:

$$E(\beta, f) = \{ y \in \mathcal{S}_d; \ \beta(y) = \beta \}$$
.

The family $(\mathcal{E}(\beta, f))_{\beta}$ is a nonincreasing family of sets and the sets $(\mathcal{E}(\beta, f))$ are disjoints.

The divergence index

Let $f \in L^1(\mathcal{S}_d)$ and $y_0 \in \mathcal{S}_d$.

$$\beta(y_0) = \inf \left(\beta ; |P[f](ry_0)| = O((1-r)^{-\beta}) \right)$$

$$= \limsup_{r \to 1} \frac{\log |P[f](ry_0)|}{-\log(1-r)}.$$

Level sets:

$$E(\beta, f) = \{ y \in \mathcal{S}_d; \ \beta(y) = \beta \}$$
.

The family $(\mathcal{E}(\beta, f))_{\beta}$ is a nonincreasing family of sets and the sets $(\mathcal{E}(\beta, f))$ are disjoints.

Spectrum of singularities:

$$\beta \mapsto \dim_{\mathcal{H}} (E(\beta, f))$$
.

Of course,
$$E(\beta,f)\subset\bigcap_{\gamma<\beta}\mathcal{E}(\gamma,f)$$
, so that
$$\dim_{\mathcal{H}}\big(E(\beta,f)\big)\leq d-\beta\ .$$

Of course,
$$E(\beta,f)\subset\bigcap_{\gamma<\beta}\mathcal{E}(\gamma,f)$$
, so that
$$\dim_{\mathcal{H}}\big(E(\beta,f)\big)\leq d-\beta\ .$$

Theorem (Bayart, H.)

For quasi-all functions $f \in L^1(S_d)$, $\forall \beta \in [0, d], \quad \dim_{\mathcal{H}} (E(\beta, f)) = d - \beta$.

Of course,
$$E(\beta,f)\subset\bigcap_{\gamma<\beta}\mathcal{E}(\gamma,f)$$
, so that
$$\dim_{\mathcal{H}}\big(E(\beta,f)\big)\leq d-\beta\ .$$

Theorem (Bayart, H.)

For quasi-all functions $f \in L^1(S_d)$,

$$\forall \beta \in [0, d], \quad \dim_{\mathcal{H}} (E(\beta, f)) = d - \beta.$$

• Roughly speaking, $|P[f](ry)| \approx (1-r)^{-\beta}$ in a set with dimension $d-\beta$.

Of course,
$$E(\beta,f)\subset\bigcap_{\gamma<\beta}\mathcal{E}(\gamma,f)$$
, so that
$$\dim_{\mathcal{H}}\big(E(\beta,f)\big)\leq d-\beta\ .$$

Theorem (Bayart, H.)

For quasi-all functions $f \in L^1(S_d)$,

$$\forall \beta \in [0, d], \quad \dim_{\mathcal{H}} (E(\beta, f)) = d - \beta.$$

- Roughly speaking, $|P[f](ry)| \approx (1-r)^{-\beta}$ in a set with dimension $d-\beta$.
- "quasi-all" is related to the Baire category theorem.

Of course,
$$E(\beta,f)\subset\bigcap_{\gamma<\beta}\mathcal{E}(\gamma,f)$$
, so that
$$\dim_{\mathcal{H}}\big(E(\beta,f)\big)\leq d-\beta\ .$$

Theorem (Bayart, H.)

For quasi-all functions $f \in L^1(S_d)$,

$$\forall \beta \in [0, d], \quad \dim_{\mathcal{H}} (E(\beta, f)) = d - \beta.$$

- Roughly speaking, $|P[f](ry)| \approx (1-r)^{-\beta}$ in a set with dimension $d-\beta$.
- "quasi-all" is related to the Baire category theorem.
- For such f we also have $\dim_{\mathcal{H}} (\mathcal{E}(\beta, f)) = d \beta$.

There exists a sequence $(\mathcal{R}_n)_{n\geq 1}$ of finite subsets of \mathcal{S}^d satisfying

- $\mathcal{R}_n \subset \mathcal{R}_{n+1}$;
- $\bigcup_{x \in \mathcal{R}_n} \kappa(x, 2^{-n}) = \mathcal{S}_d$;
- card $(\mathcal{R}_n) \leq C2^{nd}$;
- For any x, y in \mathcal{R}_n , $x \neq y$, then $|x y| \geq 2^{-n}$.

There exists a sequence $(\mathcal{R}_n)_{n\geq 1}$ of finite subsets of \mathcal{S}^d satisfying

- $\mathcal{R}_n \subset \mathcal{R}_{n+1}$;
- $\bigcup_{x \in \mathcal{R}_n} \kappa(x, 2^{-n}) = \mathcal{S}_d$;
- card $(\mathcal{R}_n) \leq C2^{nd}$;
- For any x, y in \mathcal{R}_n , $x \neq y$, then $|x y| \geq 2^{-n}$.

If
$$\alpha>1$$
, let $N_{n,\alpha}=[n/\alpha]+1$ and
$$D_{n,\alpha}=\bigcup_{x\in\mathcal{R}_{N_{n,\alpha}}}\kappa\big(x,2^{-n}\big).$$

There exists a sequence $(\mathcal{R}_n)_{n\geq 1}$ of finite subsets of \mathcal{S}^d satisfying

- $\mathcal{R}_n \subset \mathcal{R}_{n+1}$;
- $\bigcup_{x \in \mathcal{R}_n} \kappa(x, 2^{-n}) = \mathcal{S}_d$;
- card $(\mathcal{R}_n) \leq C2^{nd}$;
- For any x, y in \mathcal{R}_n , $x \neq y$, then $|x y| \geq 2^{-n}$.

If $\alpha>1$, let $\mathit{N}_{\mathit{n},\alpha}=\left[\mathit{n}/\alpha\right]+1$ and

$$D_{n,\alpha} = \bigcup_{x \in \mathcal{R}_{N_{n,\alpha}}} \kappa(x, 2^{-n}).$$

Proposition

$$\mathcal{H}^{d/\alpha}\left(\limsup_{n\to+\infty}D_{n,\alpha}\right)=+\infty.$$

There exists a sequence $(\mathcal{R}_n)_{n\geq 1}$ of finite subsets of \mathcal{S}^d satisfying

- $\mathcal{R}_n \subset \mathcal{R}_{n+1}$;
- $\bigcup_{x \in \mathcal{R}_n} \kappa(x, 2^{-n}) = \mathcal{S}_d;$
- card $(\mathcal{R}_n) \leq C2^{nd}$;
- For any x, y in \mathcal{R}_n , $x \neq y$, then $|x y| \geq 2^{-n}$.

If $\alpha > 1$, let $N_{n,\alpha} = [n/\alpha] + 1$ and

$$D_{n,\alpha} = \bigcup_{x \in \mathcal{R}_{N_{n,\alpha}}} \kappa(x, 2^{-n}).$$

Proposition

$$\mathcal{H}^{d/\alpha}\left(\limsup_{n\to+\infty}D_{n,\alpha}\right)=+\infty.$$

Proof: mass transference principle.

There exists a sequence $(\mathcal{R}_n)_{n\geq 1}$ of finite subsets of \mathcal{S}^d satisfying

- $\mathcal{R}_n \subset \mathcal{R}_{n+1}$;
- $\bigcup_{x \in \mathcal{R}_n} \kappa(x, 2^{-n}) = \mathcal{S}_d;$
- card $(\mathcal{R}_n) \leq C2^{nd}$;
- For any x, y in \mathcal{R}_n , $x \neq y$, then $|x y| \geq 2^{-n}$.

If $\alpha>1$, let $\mathit{N}_{\mathit{n},\alpha}=[\mathit{n}/\alpha]+1$ and

$$D_{n,\alpha} = \bigcup_{x \in \mathcal{R}_{N_{n,\alpha}}} \kappa(x, 2^{-n}).$$

Proposition

$$\mathcal{H}^{d/\alpha}\left(\limsup_{n\to+\infty}D_{n,\alpha}\right)=+\infty.$$

Proof: mass transference principle.

Remark: we can replace n by a subsequence $n_k \cdot n_k \cdot n_$

In the way of saturating functions

$$f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2\cdot 2^{-n})}.$$

In the way of saturating functions

$$f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2\cdot 2^{-n})}.$$

Proposition

 $f_n \in L^1(\mathcal{S}_d)$ and $||f_n||_1 \leq C$. Moreover, for any $\alpha > 1$, for any $y \in D_{n,\alpha}$,

$$P[f_n](r_n y) \geq \frac{C}{n} 2^{(n-N_{n,\alpha})d},$$

where $1 - r_n = 2^{-n}$, $N_{n,\alpha} = [n/\alpha] + 1$ and C is independent of n and α .

In the way of saturating functions

$$f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2\cdot 2^{-n})}.$$

Proposition

 $f_n \in L^1(S_d)$ and $||f_n||_1 \leq C$. Moreover, for any $\alpha > 1$, for any $y \in D_{n,\alpha}$,

$$P[f_n](r_n y) \geq \frac{C}{n} 2^{(n-N_{n,\alpha})d},$$

where $1 - r_n = 2^{-n}$, $N_{n,\alpha} = [n/\alpha] + 1$ and C is independent of n and α .

Remark: $2^{(n-N_{n,\alpha})d} \approx (1-r_n)^{-\beta}$ if $\frac{d}{\alpha} = d-\beta$.

$$f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2\cdot 2^{-n})}.$$

$$f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2\cdot 2^{-n})}.$$

Let $y \in D_{n,\alpha}$ and let $x_0 \in \mathcal{R}_{N_{n,\alpha}}$ such that $y \in \kappa(x_0, 2^{-n})$.

$$f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2\cdot 2^{-n})}.$$

Let $y \in D_{n,\alpha}$ and let $x_0 \in \mathcal{R}_{N_{n,\alpha}}$ such that $y \in \kappa(x_0, 2^{-n})$. Observe that $\kappa(y, 2^{-n}) \subset \kappa(x_0, 2 \cdot 2^{-n})$.

$$f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2\cdot 2^{-n})}.$$

Let $y \in D_{n,\alpha}$ and let $x_0 \in \mathcal{R}_{N_{n,\alpha}}$ such that $y \in \kappa(x_0, 2^{-n})$. Observe that $\kappa(y, 2^{-n}) \subset \kappa(x_0, 2.2^{-n})$. Using the positivity of the Poisson kernel, we get

$$P[f_n](r_ny) \geq \frac{1}{n+1} \int_{\kappa(y,2^{-n})} 2^{(n-N_{n,\alpha})d} P(r_ny,\xi) d\sigma(\xi)$$

$$f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2\cdot 2^{-n})}.$$

Let $y \in D_{n,\alpha}$ and let $x_0 \in \mathcal{R}_{N_{n,\alpha}}$ such that $y \in \kappa(x_0, 2^{-n})$. Observe that $\kappa(y, 2^{-n}) \subset \kappa(x_0, 2.2^{-n})$. Using the positivity of the Poisson kernel, we get

$$P[f_n](r_n y) \geq \frac{1}{n+1} \int_{\kappa(y,2^{-n})} 2^{(n-N_{n,\alpha})d} P(r_n y, \xi) d\sigma(\xi)$$

$$\geq \frac{C}{n+1} 2^{(n-N_{n,\alpha})d}.$$

Proposition

There exists a dense sequence $(h_n)_{n\geq 1}$ in $L^1(\mathcal{S}_d)$ such that for any $n\geq 1$, for any $\alpha>1$ and any $y\in D_{n,\alpha}$,

$$P[h_n](r_n y) \geq \frac{C}{n^2} 2^{(n-N_{n,\alpha})d},$$

where $r_n = 1 - 2^{-n}$.

Proposition

There exists a dense sequence $(h_n)_{n\geq 1}$ in $L^1(\mathcal{S}_d)$ such that for any $n\geq 1$, for any $\alpha>1$ and any $y\in D_{n,\alpha}$,

$$P[h_n](r_n y) \geq \frac{C}{n^2} 2^{(n-N_{n,\alpha})d},$$

where $r_n = 1 - 2^{-n}$.

Let $(g_n)_{n\geq 1}$ be a dense sequence of continuous functions such that $\|g_n\|_{\infty}\leq n$.

$$h_n = \frac{1}{n}f_n + g_n$$

Proposition

There exists a dense sequence $(h_n)_{n\geq 1}$ in $L^1(\mathcal{S}_d)$ such that for any $n\geq 1$, for any $\alpha>1$ and any $y\in D_{n,\alpha}$,

$$P[h_n](r_n y) \geq \frac{C}{n^2} 2^{(n-N_{n,\alpha})d},$$

where $r_n = 1 - 2^{-n}$.

Let $(g_n)_{n\geq 1}$ be a dense sequence of continuous functions such that $\|g_n\|_{\infty}\leq n$.

$$h_n = \frac{1}{n}f_n + g_n$$

$$||P[g_n]||_{\infty} \leq n.$$

Proposition

There exists a dense sequence $(h_n)_{n\geq 1}$ in $L^1(\mathcal{S}_d)$ such that for any $n\geq 1$, for any $\alpha>1$ and any $y\in D_{n,\alpha}$,

$$P[h_n](r_n y) \geq \frac{C}{n^2} 2^{(n-N_{n,\alpha})d},$$

where $r_n = 1 - 2^{-n}$.

Let $(g_n)_{n\geq 1}$ be a dense sequence of continuous functions such that $\|g_n\|_{\infty}\leq n$.

$$h_n = \frac{1}{n}f_n + g_n$$

$$||P[g_n]||_{\infty} \le n$$
. Then, $P[h_n](r_n y) \ge \frac{1}{n} P[f_n](r_n y) - n$.

The dense \mathcal{G}_{δ} set

The residual set we will consider is the dense G_{δ} -set

$$A = \bigcap_{k \geq 1} \bigcup_{n \geq k} B_{L^1}(h_n, \delta_n).$$

where δ_n is such that $||f||_1 \leq \delta_n \Rightarrow ||P[f](r_n \cdot)||_{\infty} \leq 1$.

The dense \mathcal{G}_{δ} set

The residual set we will consider is the dense G_{δ} -set

$$A = \bigcap_{k \geq 1} \bigcup_{n \geq k} B_{L^1}(h_n, \delta_n).$$

where δ_n is such that $\|f\|_1 \leq \delta_n \Rightarrow \|P[f](r_n \cdot)\|_{\infty} \leq 1$.

If
$$||f - h_n||_1 < \delta_n$$
,

$$P[f](r_n y) \ge P[h_n](r_n y) - 1 \ge C \frac{2^{(n-N_{n,\alpha})d}}{2n^2} - 1.$$

The dense \mathcal{G}_{δ} set

The residual set we will consider is the dense G_{δ} -set

$$A = \bigcap_{k \geq 1} \bigcup_{n \geq k} B_{L^1}(h_n, \delta_n).$$

where δ_n is such that $||f||_1 \le \delta_n \Rightarrow ||P[f](r_n \cdot)||_{\infty} \le 1$.

If
$$||f - h_n||_1 < \delta_n$$
,

$$P[f](r_n y) \ge P[h_n](r_n y) - 1 \ge C \frac{2^{(n-N_{n,\alpha})d}}{2n^2} - 1.$$

$$\frac{\log |P[f](r_n y)|}{-\log(1-r_n)} \geq \left(d - \frac{N_{n,\alpha}d}{n}\right) + o(1).$$

$$d - \frac{N_{n,\alpha}d}{n} \approx d - \frac{d}{\alpha} = \beta$$
 if $\frac{d}{\alpha} = d - \beta$.

The case of nonnegative harmonic functions

The set $\mathcal{H}^+(B_{d+1})$ of nonnegative harmonic functions in the ball B_{d+1} endowed with the topology of the locally uniform convergence is a closed cone in the space of all continuous functions in the ball: it satisfies Baire's property.

The case of nonnegative harmonic functions

The set $\mathcal{H}^+(B_{d+1})$ of nonnegative harmonic functions in the ball B_{d+1} endowed with the topology of the locally uniform convergence is a closed cone in the space of all continuous functions in the ball : it satisfies Baire's property.

Theorem

For quasi-all nonnegative harmonic functions h in the unit ball B_{d+1} , for any $\beta \in [0, d]$,

$$\dim_{\mathcal{H}} \big(E(\beta, h) \big) = d - \beta$$

where

$$E(\beta, h) = \left\{ y \in \mathcal{S}_d \; ; \; \limsup_{r \to 1} \frac{\log h(ry)}{-\log(1-r)} = \beta \right\}.$$

Merci!