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The beginning of the story
If f € LP(T), p> 1, S,f(x) = Sp__, f(k)e™™ is almost
surely convergent but there are possible divergence points.

For a given 3, what is the size of the set of points x for which
|Saf(x)| > ni0. ?
What is the behaviour of S,f for a generic function f € LP 7

Let 5(x) be the supremum of the beta such that
|Saf(x)| >> n? i0. and E(f,3) = {x € T ; B(x) = B}
If f is a generic function in LP(T),

for any € [0,1/p], dimy(E(,f)) =1 Bp.

(Bayart, H., 2011)
What about P, % f(x) = 272 _ rlklIf(k)e™™ when r — 17
h(re™) = P, % f(x) is harmonic in the unit disk.

r — 1 corresponds to the radial convergence in the disk.
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Harmonic functions in the ball By,
The Poisson kernel:

1— |||

P(x,§) = =gl

e Bounded harmonic functions

h(x) = P[f](x) = / P(x,&) f(&)do(§) with € L*(Sy)

Sy
e Nonnegative harmonic functions

h(x) = Plul(x) = / P(.E)du(€) with e M¥(Sy)

Sy
e Harmonic functions with L! data

h(x) = P[f](x) = / P(x,€) f(&)do(€) with £ e [}(Sy)

Sq
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Fatou's Lemma

e Fatou (1906) : if f € L>°(T), then

P, x f(x) — f(x) almost surely.

e Generalizations (Hardy-Littlewood, Wiener, Bochner. . .)

d
Plu](ry) — d—”(y) do-almost surely when r — 1.
o

e Hunt and Wheeden (1970) : If h is a nonnegative harmonic
function in a Lipschitz domain U C R”, then h has a non
tangential limit at almost every point of the boundary OU.
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Natural questions

Question
Let y € Sy such that P[f](ry) diverges. How quick can be the
divergence of P[f](ry) ?

An elementary upper bound:

2|1

r 2
PO = | [ et o) < 200

[[ry — €[j9+1

Question
Let 5 € (0, d]. What is the size of the set of points y such that
|P[f](ry)| ~ (1 —r)~® when r — 17
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Hausdorff dimension of exceptional sets
0<p<d

: |PIF1(ry)
E(B,f)= {y € Sq; hr?jijpﬁ — +oo}

Theorem (Bayart, H.)

e Forany f € L}(Sy), dimy (E(B,f)) < d — 8.
e If E C Sy is such that dimy(E) < d — 3, there exists
f € L1(Sy) such that E C £(B,f).

The first part was already obtained by Armitage (1981) in the
context of the half upper space.
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A more precise result
Let 7 be a nonnegative nonincreasing function such that

7(s) =~ 7(2s), s'if& 7(s) = +oo and 7(s) < s %

Define
_ . [PIFI(y)l _
E(r,f) = {y € Sy; I|r’rnj;1p i-r) +00
and the gauge function ¢ by ¢(s) = 7(s)s9.

Theorem (Bayart, H.)

e Forany f € L}(Sy), H?(E(T,f)) =0.
o If E C Sq is such that H?(E) = 0, there exists f € L}(Sy)
such that E C E(r, f).
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The Hardy-Littlewwod maximal inequality

PLul(x) = /S P(x.€) du(é)

|ul(k(y, 9))
resa)pl)lP[u](ry)\ <sup o (rly.9))

where k(y,8) = {€ € Sa; [|€ -y < d}.
k(y,d) is called a cap.

Lemma (a quantitative improvement)
Let 0 < r < 1. There exists > 1 — r such that

|l (k(y, 6))
|Plul(ry)| < Cia(/{(y,é)) :

where C is a constant independent of u, r and y.
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Dimension of (3, i) : the upper bound
7(s) =s75.

E(B,p) = {y € Sy; liTjiij = —l—oo}

Em = {yGSd; “T—ijpm > I\/I}.

Let y € &m. Using the previous lemma, we can find r, as close to
1 as we want and a cap k, = k(y,d,) with §, > 1—r,

MG = 1) < Pl )] < 282

dy goes to 0 when r, goes to 1.
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Dimension of (3, i) : the upper bound

(1- ry)_ﬂa(ny) < %‘M‘(Iﬁ?y).

By the Vitali covering lemma, we can find a family of disjoint caps
(Ky;)jen such that Ey C U, 5Ky,

S0 1) Polsy) < 1l

C
d—p
Z oy " < MHMH

C
d—8 <
HI P (Em) < 1l

HIB(E(B, ) =0
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Lower bound for the dimension : the construction
Let E be such that H9=#(E) = 0. Let R; be a 2 /-covering of E

by caps such that
> k9P <27,
KERJ'

Define

Co=<rel R 27D < |k <277
j

DD AT s <1

n>1keCp J>1 KeER;

Choose (wp)n>1 tending to infinity such that

an Z |k]97P < +oo.

n>1 KECh

Observe that E C limsup, E, where E, = (J,.c.. &
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Lower bound for the dimension : the function f

f= anz—"ﬁ Z 1,

n>1 KECH

£l < Czan_nﬁ Z k]9 < Can Z k|98 < +o0.

n>1 k€Ch n>1 KEChH
Let y € Ep = U,ec, K Ko € Cn such that y € kg and r=1—27".

Plf(ry)

v

op2 " / P(ry.€) do(€)

v

w0p2 / P(ry.€) do(©)
K(y,2™m)

> Cwp(1—r)7A.
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The divergence index
Let f € Ll(Sd) and yp € Sg.

Blw) = inf (8 IPIfl(n0)| = O((1 = N)7))
s g IPIF(00)
rs1 —log(l—r)
Level sets :

E(B,f)={y € Sa: By) =5} .

The family (£(8, f))g is a nonincreasing family of sets and the sets
(E(p,f)) are disjoints.

Spectrum of singularities :

B dimy (E(ﬁ, f)) .
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Multifractal behavior of P[f]
Of course, E(B,f) C,.3&(7,f), so that

dimy (E(8,f)) <d—3.

Theorem (Bayart, H.)
For quasi-all functions f € L*(Sy),

VB e[0,d], dimy (E(B,f))=d—8.

e Roughly speaking, |P[f](ry)| ~ (1 — r)7% in a set with
dimension d — £5.

e ‘“quasi-all” is related to the Baire category theorem.

e For such f we also have dimy (£(8,f)) = d — 3.
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The analogue of dyadic numbers in the sphere Sy
There exists a sequence (Rp)n>1 of finite subsets of S satisfying

Rn C Rn—l—l;

UxeR,, k(x,27") = Sy;

card (R,) < C2";

For any x,y in R, x # y, then |x —y| > 27".

If > 1, let Npo =[n/a]+1 and

Dpo = U /<;(x,2*”).

XE'RNH’&

Proposition

/e (Iimsup Dn,a> = 400.

n—-+o00

Proof : mass transference principle.
Remark :  we can replace n by a subsequence ny.
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PLI(ray) > 2,

where 1 —r, =27", Npo = [n/a] + 1 and C is independent of n
and o.
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In the way of saturating functions

n+1

"::n+1222(n Y x220)-

N=1xeRpy

Proposition
fn € LY(Sq) and ||f4]1 < C.
Moreover, for any oo > 1, for any y € D, o,

PLAl(rny) 2 20,
where 1 —r, =27", Npo = [n/a] + 1 and C is independent of n

and «.
Remark : 2(1=Nno)d ~ (1 — )P if & = d — .
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Proof of the proposition

1 - (n—N)d
fn = n+ 1 Z Z 2 ]]'K(X,2-2_”)'

N=1 xRy

Let y € Dy and let xo € Ry, such that y € k(x0,27").
Observe that x (y,27") C K (xp,2.27").
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Proof of the proposition

1 n+1
. —N)d
s PIDY 2, 220y
N=1 xRy

Let y € Dy and let xo € Ry, such that y € k(x0,27").
Observe that x (y,27") C K (xp,2.27").
Using the positivity of the Poisson kernel, we get

1 .
PbIGw) 2 g [ 2Py oo
Hy7 -n
> 9 2(n—Nn7a)d_

n+1
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n>1, foranya>1andanyy € Dy,

C (n
P[hn](rn}/)Z?Q( Noso)d

where r, =1—27",



Introduction Sets of divergence Generic behavior

Construction of a dense sequence

Proposition
There exists a dense sequence (h,)n>1 in L1(Sy) such that for any
n>1, foranya>1andanyy € Dy,

C (n
P[hn](rn}/)Z?Q( Noso)d

where r, =1—27",

Let (gn)n>1 be a dense sequence of continuous functions such that
lgnlloo < n.

1
hn = *fn+gn
n




Introduction Sets of divergence Generic behavior

Construction of a dense sequence

Proposition

There exists a dense sequence (h,)n>1 in L1(Sy) such that for any
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C (n
P[hn](rn}/)Z?Q( Noso)d

where r, =1—27",

Let (gn)n>1 be a dense sequence of continuous functions such that
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1
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Construction of a dense sequence

Proposition

There exists a dense sequence (h,)n>1 in L1(Sy) such that for any
n>1, foranya>1andanyy € Dy,

C (n
P[hn](rn}/)Z?Q( Noso)d

where r, =1—27",

Let (gn)n>1 be a dense sequence of continuous functions such that
lgnlloo < n.

1
hn = *fn+gn
n

|Plgnlllsc < n. Then, Plhy|(ray) > LP[f](ray) — n.
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The dense G5 set

The residual set we will consider is the dense Ggs-set

A= ()| Bu(hn:6n).

k>1 n>k

where 0, is such that ||f|l1 < 0p = ||P[f](ra)|lec < 1.

If |f = hnllx < n,

(n—Np,o)d

PIFI(ray) > Plinl(ray) —1> €22 1

v

log | P[f](ray)] ~ Ninod
“log(1—rn) (" T

d-tred gg_d—p jf d=g_p

)+ o,
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The case of nonnegative harmonic functions

The set H*(By41) of nonnegative harmonic functions in the ball
Bg+1 endowed with the topology of the locally uniform
convergence is a closed cone in the space of all continuous
functions in the ball : it satisfies Baire's property.
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The case of nonnegative harmonic functions

The set H*(By41) of nonnegative harmonic functions in the ball
Bg+1 endowed with the topology of the locally uniform
convergence is a closed cone in the space of all continuous
functions in the ball : it satisfies Baire's property.

Theorem

For quasi-all nonnegative harmonic functions h in the unit ball
Ba1, for any 8 € [0, d],

dimy, (E(8,h)) =d — 8

where

_ L log h(ry)
E(B,h) = {yeé‘d : |IT—fijpm _5}
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