Generic boundary behaviour for harmonic functions in the ball

Frédéric Bayart and Yanick Heurteaux

Laboratoire de Mathématiques - Université Blaise Pascal, Clermont-Ferrand

Domaine du Rond-Chêne, May 2015
The beginning of the story
The beginning of the story

- If $f \in L^p(\mathbb{T})$, $p > 1$, $S_n f(x) = \sum_{k=-n}^{n} \hat{f}(k)e^{inx}$ is almost surely convergent but there are possible divergence points.
The beginning of the story

• If $f \in L^p(\mathbb{T})$, $p > 1$, $S_n f(x) = \sum_{k=-n}^{n} \hat{f}(k)e^{inx}$ is almost surely convergent but there are possible divergence points.

• For a given β, what is the size of the set of points x for which $|S_n f(x)| \gg n^\beta$ i.o.?
The beginning of the story

If \(f \in L^p(\mathbb{T}) \), \(p > 1 \), \(S_n f(x) = \sum_{k=-n}^{n} \hat{f}(k)e^{inx} \) is almost surely convergent but there are possible divergence points.

For a given \(\beta \), what is the size of the set of points \(x \) for which \(|S_n f(x)| \gg n^\beta \) i.o.?

What is the behaviour of \(S_n f \) for a generic function \(f \in L^p \)?
The beginning of the story

- If $f \in L^p(\mathbb{T})$, $p > 1$, $S_n f(x) = \sum_{k=-n}^{n} \hat{f}(k) e^{inx}$ is almost surely convergent but there are possible divergence points.
- For a given β, what is the size of the set of points x for which $|S_n f(x)| \gg n^\beta$ i.o.?
- What is the behaviour of $S_n f$ for a generic function $f \in L^p$?
- Let $\beta(x)$ be the supremum of the beta such that $|S_n f(x)| \gg n^\beta$ i.o. and $E(f, \beta) = \{x \in \mathbb{T} ; \beta(x) = \beta\}$.
The beginning of the story

- If \(f \in L^p(\mathbb{T}) \), \(p > 1 \), \(S_n f(x) = \sum_{k=-n}^{n} \hat{f}(k)e^{inx} \) is almost surely convergent but there are possible divergence points.

- For a given \(\beta \), what is the size of the set of points \(x \) for which \(|S_n f(x)| \gg n^\beta \) i.o.?

- What is the behaviour of \(S_n f \) for a generic function \(f \in L^p \) ?

- Let \(\beta(x) \) be the supremum of the beta such that \(|S_n f(x)| \gg n^\beta \) i.o. and \(E(f, \beta) = \{x \in \mathbb{T} ; \beta(x) = \beta\} \).

If \(f \) is a generic function in \(L^p(\mathbb{T}) \),

\[
\text{for any } \beta \in [0, 1/p], \quad \dim_{\mathcal{H}}(E(\beta, f)) = 1 - \beta p.
\]

(Bayart, H., 2011)
The beginning of the story

- If $f \in L^p(\mathbb{T})$, $p > 1$, $S_nf(x) = \sum_{k=-n}^{n} \hat{f}(k)e^{inx}$ is almost surely convergent but there are possible divergence points.
- For a given β, what is the size of the set of points x for which $|S_nf(x)| \gg n^\beta$ i.o.?
- What is the behaviour of S_nf for a generic function $f \in L^p$?
- Let $\beta(x)$ be the supremum of the beta such that $|S_nf(x)| \gg n^\beta$ i.o. and $E(f, \beta) = \{x \in \mathbb{T}; \beta(x) = \beta\}$. If f is a generic function in $L^p(\mathbb{T})$,

 for any $\beta \in [0, 1/p]$, $\dim_{\mathcal{H}}(E(\beta, f)) = 1 - \beta p$.

 (Bayart, H., 2011)
- What about $P_r * f(x) = \sum_{k=-\infty}^{+\infty} r^{|k|} \hat{f}(k)e^{ikx}$ when $r \to 1$?
The beginning of the story

• If \(f \in L^p(\mathbb{T}) \), \(p > 1 \), \(S_n f(x) = \sum_{k=-n}^{n} \hat{f}(k)e^{inx} \) is almost surely convergent but there are possible divergence points.

• For a given \(\beta \), what is the size of the set of points \(x \) for which \(|S_n f(x)| \gg n^\beta \) i.o.?

• What is the behaviour of \(S_n f \) for a generic function \(f \in L^p \)?

• Let \(\beta(x) \) be the supremum of the beta such that \(|S_n f(x)| \gg n^\beta \) i.o. and \(E(f, \beta) = \{ x \in \mathbb{T} ; \beta(x) = \beta \} \).

If \(f \) is a generic function in \(L^p(\mathbb{T}) \),

\[
\text{dim}_H(E(\beta, f)) = 1 - \beta p.
\]

(Bayart, H., 2011)

• What about \(P_r * f(x) = \sum_{k=-\infty}^{+\infty} r|k|\hat{f}(k)e^{ikx} \) when \(r \to 1 \)?

• \(h(re^{ix}) = P_r * f(x) \) is harmonic in the unit disk.
The beginning of the story

- If $f \in L^p(\mathbb{T})$, $p > 1$, $S_n f(x) = \sum_{k=-n}^{n} \hat{f}(k) e^{inx}$ is almost surely convergent but there are possible divergence points.
- For a given β, what is the size of the set of points x for which $|S_n f(x)| \gg n^{\beta}$ i.o. ?
- What is the behaviour of $S_n f$ for a generic function $f \in L^p$?
- Let $\beta(x)$ be the supremum of the beta such that $|S_n f(x)| \gg n^{\beta}$ i.o. and $E(f, \beta) = \{x \in \mathbb{T} ; \beta(x) = \beta\}$. If f is a generic function in $L^p(\mathbb{T})$,

$$
\text{dim}_H(E(\beta, f)) = 1 - \beta p.
$$

(Bayart, H., 2011)

- What about $P_r * f(x) = \sum_{k=-\infty}^{+\infty} r |k| \hat{f}(k) e^{ikx}$ when $r \to 1$?
- $h(re^{ix}) = P_r * f(x)$ is harmonic in the unit disk.
- $r \to 1$ corresponds to the radial convergence in the disk.
Harmonic functions in the ball B_{d+1}
Harmonic functions in the ball B_{d+1}

The Poisson kernel:

$$P(x, \xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$
Harmonic functions in the ball B_{d+1}

The Poisson kernel:

$$P(x, \xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

- Bounded harmonic functions
Harmonic functions in the ball B_{d+1}

The Poisson kernel:

$$ P(x, \xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}. $$

- Bounded harmonic functions

 $$ h(x) = P[f](x) = \int_{S_d} P(x, \xi) f(\xi) d\sigma(\xi) \quad \text{with} \quad f \in L^\infty(S_d) $$
Harmonic functions in the ball B_{d+1}

The Poisson kernel:

$$P(x, \xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

- Bounded harmonic functions

$$h(x) = P[f](x) = \int_{S_d} P(x, \xi) f(\xi) d\sigma(\xi) \quad \text{with} \quad f \in L^\infty(S_d)$$

- Nonnegative harmonic functions
Harmonic functions in the ball B_{d+1}

The Poisson kernel:

$$P(x, \xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

- Bounded harmonic functions

$$h(x) = P[f](x) = \int_{S_d} P(x, \xi) f(\xi) d\sigma(\xi) \quad \text{with} \quad f \in L^\infty(S_d)$$

- Nonnegative harmonic functions

$$h(x) = P[\mu](x) = \int_{S_d} P(x, \xi) d\mu(\xi) \quad \text{with} \quad \mu \in \mathcal{M}^+(S_d)$$
Harmonic functions in the ball B_{d+1}

The Poisson kernel:

$$P(x, \xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

- Bounded harmonic functions

$$h(x) = P[f](x) = \int_{S_d} P(x, \xi) f(\xi) d\sigma(\xi) \quad \text{with} \quad f \in L^\infty(S_d)$$

- Nonnegative harmonic functions

$$h(x) = P[\mu](x) = \int_{S_d} P(x, \xi) d\mu(\xi) \quad \text{with} \quad \mu \in \mathcal{M}^+(S_d)$$

- Harmonic functions with L^1 data
Harmonic functions in the ball B_{d+1}

The Poisson kernel:

$$P(x, \xi) = \frac{1 - \|x\|^2}{\|x - \xi\|^{d+1}}.$$

- Bounded harmonic functions

$$h(x) = P[f](x) = \int_{S_d} P(x, \xi) f(\xi) d\sigma(\xi) \quad \text{with} \quad f \in L^\infty(S_d)$$

- Nonnegative harmonic functions

$$h(x) = P[\mu](x) = \int_{S_d} P(x, \xi) d\mu(\xi) \quad \text{with} \quad \mu \in \mathcal{M}^+(S_d)$$

- Harmonic functions with L^1 data

$$h(x) = P[f](x) = \int_{S_d} P(x, \xi) f(\xi) d\sigma(\xi) \quad \text{with} \quad f \in L^1(S_d)$$
Fatou’s Lemma

Fatou (1906): If $f \in L^\infty(T)$, then $\mathcal{P} \mathcal{R} f(x) \to f(x)$ almost surely.

Generalizations (Hardy-Littlewood, Wiener, Bochner, ...)

Hunt and Wheeden (1970): If h is a nonnegative harmonic function in a Lipschitz domain $U \subset \mathbb{R}^n$, then h has a non-tangential limit at almost every point of the boundary ∂U.
Fatou’s Lemma

- Fatou (1906): if \(f \in L^\infty(\mathbb{T}) \), then

\[
P_r * f(x) \to f(x) \quad \text{almost surely.}
\]
Fatou’s Lemma

- Fatou (1906): if $f \in L^\infty(\mathbb{T})$, then
 \[P_r \ast f(x) \to f(x) \quad \text{almost surely.} \]

- Generalizations (Hardy-Littlewood, Wiener, Bochner...)
 \[P[\mu](ry) \to \frac{d\mu}{d\sigma}(y) \quad d\sigma\text{-almost surely when } r \to 1. \]
Fatou's Lemma

- Fatou (1906): if $f \in L^\infty(\mathbb{T})$, then
 \[P_r \ast f(x) \to f(x) \text{ almost surely.} \]

- Generalizations (Hardy-Littlewood, Wiener, Bochner...)
 \[P[\mu](ry) \to \frac{d\mu}{d\sigma}(y) \text{ $d\sigma$-almost surely when } r \to 1. \]

- Hunt and Wheeden (1970): If h is a nonnegative harmonic function in a Lipschitz domain $U \subset \mathbb{R}^n$, then h has a non tangential limit at almost every point of the boundary ∂U.
Natural questions

Question
Let \(y \in S_d \) such that \(P[f](ry) \) diverges. How quick can be the divergence of \(P[f](ry) \) ?

An elementary upper bound:
\[
|P[f](ry)| \leq 2 \|f\|_1 (1 - r) d\sigma(\xi)
\]
Natural questions

Question

Let $y \in S_d$ such that $P[f](ry)$ diverges. How quick can be the divergence of $P[f](ry)$?

An elementary upper bound:
Natural questions

Question
Let $y \in S_d$ such that $P[f](ry)$ diverges. How quick can be the divergence of $P[f](ry)$?

An elementary upper bound:

$$|P[f](ry)| = \left| \int_{S_d} \frac{1 - \|ry\|^2}{\|ry - \xi\|^{d+1}} f(\xi) d\sigma(\xi) \right|$$
Natural questions

Question
Let \(y \in S_d \) such that \(P[f](ry) \) diverges. How quick can be the divergence of \(P[f](ry) \) ?

An elementary upper bound:

\[
|P[f](ry)| = \left| \int_{S_d} \frac{1 - \|ry\|^2}{\|ry - \xi\|^{d+1}} f(\xi) d\sigma(\xi) \right| \leq \frac{2\|f\|_1}{(1 - r)^d}
\]
Natural questions

Question
Let \(y \in S_d \) such that \(P[f](ry) \) diverges. How quick can be the divergence of \(P[f](ry) \)?

An elementary upper bound:

\[
|P[f](ry)| = \left| \int_{S_d} \frac{1 - \|ry\|^2}{\|ry - \xi\|^{d+1}} f(\xi) d\sigma(\xi) \right| \leq \frac{2\|f\|_1}{(1 - r)^d}
\]

Question
Let \(\beta \in (0, d] \). What is the size of the set of points \(y \) such that \(|P[f](ry)| \approx (1 - r)^{-\beta} \) when \(r \to 1 \)?
Hausdorff dimension of exceptional sets
Hausdorff dimension of exceptional sets

\[0 < \beta < d \]

\[\mathcal{E}(\beta, f) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[f](ry)|}{(1 - r)^{-\beta}} = +\infty \right\} \]
Hausdorff dimension of exceptional sets

0 < \beta < d

\[E(\beta, f) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[f](ry)|}{(1 - r)^{-\beta}} = +\infty \right\} \]

Theorem (Bayart, H.)

- For any \(f \in L^1(S_d) \), \(\dim_H (E(\beta, f)) \leq d - \beta \).
Hausdorff dimension of exceptional sets

$0 < \beta < d$

$$\mathcal{E}(\beta, f) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[f](ry)|}{(1 - r)^{-\beta}} = +\infty \right\}$$

Theorem (Bayart, H.)

- For any $f \in L^1(S_d)$, $\dim_H(\mathcal{E}(\beta, f)) \leq d - \beta$.
- If $E \subset S_d$ is such that $\dim_H(E) < d - \beta$, there exists $f \in L^1(S_d)$ such that $E \subset \mathcal{E}(\beta, f)$.
Hausdorff dimension of exceptional sets

\[0 < \beta < d \]

\[\mathcal{E}(\beta, f) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[f](ry)|}{(1 - r)^{-\beta}} = +\infty \right\} \]

Theorem (Bayart, H.)

- For any \(f \in L^1(S_d) \), \(\dim_H(\mathcal{E}(\beta, f)) \leq d - \beta \).
- If \(E \subset S_d \) is such that \(\dim_H(E) < d - \beta \), there exists \(f \in L^1(S_d) \) such that \(E \subset \mathcal{E}(\beta, f) \).

The first part was already obtained by Armitage (1981) in the context of the half upper space.
A more precise result

Let τ be a nonnegative nonincreasing function such that

\[
\tau(s) \approx \tau(2s), \quad \lim_{s \to 0^+} \tau(s) = +\infty \quad \text{and} \quad \tau(s) \ll s^{-d}.
\]
A more precise result

Let τ be a nonnegative nonincreasing function such that

$$\tau(s) \approx \tau(2s), \quad \lim_{s \to 0^+} \tau(s) = +\infty \quad \text{and} \quad \tau(s) \ll s^{-d}.$$

Define

$$\mathcal{E}(\tau, f) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[f](ry)|}{\tau(1 - r)} = +\infty \right\}$$
A more precise result

Let τ be a nonnegative nonincreasing function such that

$$\tau(s) \approx \tau(2s), \quad \lim_{s \to 0^+} \tau(s) = +\infty \quad \text{and} \quad \tau(s) \ll s^{-d}.$$

Define

$$E(\tau, f) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[f](ry)|}{\tau(1 - r)} = +\infty \right\}$$

and the gauge function ϕ by $\phi(s) = \tau(s)s^d$.

\[\text{Theorem (Bayart, H.)} \]

• For any $f \in L^1(S_d)$, $H_{\phi}(E(\tau, f)) = 0$.

• If $E \subset S_d$ is such that $H_{\phi}(E) = 0$, there exists $f \in L^1(S_d)$ such that $E \subset E(\tau, f)$.

A more precise result

Let τ be a nonnegative nonincreasing function such that

$$\tau(s) \approx \tau(2s), \quad \lim_{s \to 0^+} \tau(s) = +\infty \quad \text{and} \quad \tau(s) \ll s^{-d}. \quad (1)$$

Define

$$\mathcal{E}(\tau, f) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[f](ry)|}{\tau(1-r)} = +\infty \right\}$$

and the gauge function ϕ by $\phi(s) = \tau(s)s^d$.

Theorem (Bayart, H.)

- For any $f \in L^1(S_d)$, $\mathcal{H}^\phi(\mathcal{E}(\tau, f)) = 0$.
A more precise result

Let τ be a nonnegative nonincreasing function such that

$$\tau(s) \approx \tau(2s), \quad \lim_{s \to 0^+} \tau(s) = +\infty \quad \text{and} \quad \tau(s) \ll s^{-d}.$$

Define

$$\mathcal{E}(\tau, f) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[f](ry)|}{\tau(1 - r)} = +\infty \right\}$$

and the gauge function ϕ by $\phi(s) = \tau(s)s^d$.

Theorem (Bayart, H.)

- For any $f \in L^1(S_d)$, $\mathcal{H}^\phi(\mathcal{E}(\tau, f)) = 0$.
- If $E \subset S_d$ is such that $\mathcal{H}^\phi(E) = 0$, there exists $f \in L^1(S_d)$ such that $E \subset \mathcal{E}(\tau, f)$.
The Hardy-Littlewood maximal inequality

\[P[\mu](x) = \int_{S_d} P(x, \xi) \, d\mu(\xi) \]
The Hardy-Littlewood maximal inequality

\[P[\mu](x) = \int_{S_d} P(x, \xi) \, d\mu(\xi) \]

where \(\kappa(y, \delta) = \{ \xi \in S_d; \| \xi - y \| < \delta \} \).

\[\sup_{r \in (0,1)} |P[\mu](ry)| \leq \sup_{\delta > 0} \frac{|\mu(\kappa(y, \delta))|}{\sigma(\kappa(y, \delta))} \]

\(\kappa \) is called a cap.
The Hardy-Littlewood maximal inequality

\[P[\mu](x) = \int_{S_d} P(x, \xi) \, d\mu(\xi) \]

\[
\sup_{r \in (0,1)} |P[\mu](ry)| \leq \sup_{\delta > 0} \frac{|\mu(\kappa(y, \delta))|}{\sigma(\kappa(y, \delta))}
\]

where \(\kappa(y, \delta) = \{ \xi \in S_d; \|\xi - y\| < \delta \} \).

\(\kappa(y, \delta) \) is called a cap.
The Hardy-Littlewood maximal inequality

\[P[\mu](x) = \int_{S_d} P(x, \xi) \, d\mu(\xi) \]

\[
\sup_{r \in (0,1)} |P[\mu](ry)| \leq \sup_{\delta > 0} \frac{|\mu| (\kappa(y, \delta))}{\sigma(\kappa(y, \delta))}
\]

where \(\kappa(y, \delta) = \{ \xi \in S_d; \| \xi - y \| < \delta \} \).

\(\kappa(y, \delta) \) is called a cap.

Lemma (a quantitative improvement)

Let \(0 < r < 1 \). There exists \(\delta \geq 1 - r \) such that

\[
|P[\mu](ry)| \leq C \frac{|\mu| (\kappa(y, \delta))}{\sigma(\kappa(y, \delta))},
\]

where \(C \) is a constant independent of \(\mu, r \) and \(y \).
Dimension of $\mathcal{E}(\beta, \mu) :$ the upper bound

$$\tau(s) = s^{-\beta}.$$
Dimension of $\mathcal{E}(\beta, \mu)$: the upper bound

$$\tau(s) = s^{-\beta}.$$

$$\mathcal{E}(\beta, \mu) = \left\{ y \in \mathcal{S}_d; \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1 - r)^{-\beta}} = +\infty \right\}$$
Dimension of $\mathcal{E}(\beta, \mu)$: the upper bound

$$\tau(s) = s^{-\beta}.$$

$$\mathcal{E}(\beta, \mu) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1 - r)^{-\beta}} = +\infty \right\}$$

$$\mathcal{E}_M = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1 - r)^{-\beta}} > M \right\}.$$
Dimension of $\mathcal{E}(\beta, \mu)$: the upper bound

$$\tau(s) = s^{-\beta}.$$

$$\mathcal{E}(\beta, \mu) = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1 - r)^{-\beta}} = +\infty \right\}$$

$$\mathcal{E}_M = \left\{ y \in S_d; \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1 - r)^{-\beta}} > M \right\}.$$

Let $y \in \mathcal{E}_M$. Using the previous lemma, we can find r_y as close to 1 as we want and a cap $\kappa_y = \kappa(y, \delta_y)$ with $\delta_y \geq 1 - r_y$

$$M(1 - r_y)^{-\beta} < |P[\mu](ry_y)| \leq C \frac{|\mu|(\kappa_y)}{\sigma(\kappa_y)}.$$
Dimension of $\mathcal{E}(\beta, \mu) :$ the upper bound

$$\tau(s) = s^{-\beta}.$$

$$\mathcal{E}(\beta, \mu) = \left\{ y \in S_d ; \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1 - r)^{-\beta}} = +\infty \right\}$$

$$\mathcal{E}_M = \left\{ y \in S_d ; \limsup_{r \to 1} \frac{|P[\mu](ry)|}{(1 - r)^{-\beta}} > M \right\}.$$

Let $y \in \mathcal{E}_M.$ Using the previous lemma, we can find r_y as close to 1 as we want and a cap $\kappa_y = \kappa(y, \delta_y)$ with $\delta_y \geq 1 - r_y$

$$M(1 - r_y)^{-\beta} < |P[\mu](r_y y)| \leq C \frac{|\mu|(\kappa_y)}{\sigma(\kappa_y)}.$$

δ_y goes to 0 when r_y goes to 1.
Dimension of $\mathcal{E}(\beta, \mu)$: the upper bound

\[(1 - r_y)^{-\beta} \sigma(\kappa_y) < \frac{C}{M} |\mu|(\kappa_y).\]
Dimension of $\mathcal{E}(\beta, \mu) : \text{the upper bound}$

$$(1 - r_y)^{-\beta} \sigma(\kappa_y) < \frac{C}{M} |\mu|(\kappa_y).$$

By the Vitali covering lemma, we can find a family of disjoint caps $(\kappa_{y_j})_{j \in \mathbb{N}}$ such that $\mathcal{E}_M \subset \bigcup_i 5\kappa_{y_i}$.

Dimension of $\mathcal{E}(\beta, \mu) :$ the upper bound

\[(1 - r_y)^{-\beta} \sigma(\kappa_y) < \frac{C}{M} |\mu|(\kappa_y).\]

By the Vitali covering lemma, we can find a family of disjoint caps $(\kappa_{y_j})_{j \in \mathbb{N}}$ such that $\mathcal{E}_M \subset \bigcup_i 5\kappa_{y_i}.$

\[\sum_i (1 - r_{y_i})^{-\beta} \sigma(\kappa_{y_i}) \leq \frac{C}{M} \|\mu\|\]
Dimension of $\mathcal{E}(\beta, \mu)$: the upper bound

$$(1 - r_y)^{-\beta} \sigma(\kappa_y) < \frac{C}{M} |\mu|(\kappa_y).$$

By the Vitali covering lemma, we can find a family of disjoint caps $(\kappa_{y_j})_{j \in \mathbb{N}}$ such that $\mathcal{E}_M \subset \bigcup_i 5\kappa_{y_i}$.

$$\sum_i (1 - r_{y_i})^{-\beta} \sigma(\kappa_{y_i}) \leq \frac{C}{M} \|\mu\|$$

$$\sum_i \delta_{y_i}^{d-\beta} \leq \frac{C}{M} \|\mu\|$$
Dimension of $\mathcal{E}(\beta, \mu)$: the upper bound

$$(1 - r_y)^{-\beta} \sigma(\kappa_y) < \frac{C}{M} |\mu|(\kappa_y).$$

By the Vitali covering lemma, we can find a family of disjoint caps $(\kappa_{y_j})_{j \in \mathbb{N}}$ such that $\mathcal{E}_M \subset \bigcup_i 5\kappa_{y_i}$.

$$\sum_i (1 - r_{y_i})^{-\beta} \sigma(\kappa_{y_i}) \leq \frac{C}{M} \|\mu\|$$

$$\sum_i \delta_{y_i}^{d-\beta} \leq \frac{C}{M} \|\mu\|$$

$$\mathcal{H}^{d-\beta}(\mathcal{E}_M) \leq \frac{C}{M} \|\mu\|$$
Dimension of $\mathcal{E}(\beta, \mu) :$ the upper bound

$$(1 - r_y)^{-\beta} \sigma(\kappa_y) < \frac{C}{M} |\mu|(\kappa_y).$$

By the Vitali covering lemma, we can find a family of disjoint caps $(\kappa_{y_j})_{j \in \mathbb{N}}$ such that $\mathcal{E}_M \subset \bigcup_i 5\kappa_{y_i}.$

$$\sum_i (1 - r_{y_i})^{-\beta} \sigma(\kappa_{y_i}) \leq \frac{C}{M} \|\mu\|$$

$$\sum_i \delta_{y_i}^{d-\beta} \leq \frac{C}{M} \|\mu\|$$

$$\mathcal{H}^{d-\beta}(\mathcal{E}_M) \leq \frac{C}{M} \|\mu\|$$

$$\mathcal{H}^{d-\beta}(\mathcal{E}(\beta, \mu)) = 0$$
Lower bound for the dimension: an elementary lemma

If $r > 1/2$, \[\int_{\kappa(N,1-r)} P(rN, \xi) d\sigma(\xi) \geq C \]
Lower bound for the dimension : an elementary lemma

If \(r > 1/2 \), \(\int_{\kappa(N,1-r)} P(rN,\xi) d\sigma(\xi) \geq C \)
Lower bound for the dimension : the construction
Lower bound for the dimension : the construction

Let \(E \) be such that \(\mathcal{H}^{d-\beta}(E) = 0 \).
Lower bound for the dimension: the construction

Let E be such that $\mathcal{H}^{d-\beta}(E) = 0$. Let \mathcal{R}_j be a 2^{-j}-covering of E by caps such that

$$\sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \leq 2^{-j}.$$

Choose $(\omega_n)_{n \geq 1}$ tending to infinity such that

$$\sum_{n \geq 1} \omega_n \sum_{\kappa \in C_n} |\kappa|^{d-\beta} < +\infty.$$
Lower bound for the dimension: the construction

Let E be such that $\mathcal{H}^{d-\beta}(E) = 0$. Let \mathcal{R}_j be a 2^{-j}-covering of E by caps such that

$$\sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \leq 2^{-j}.$$

Define

$$\mathcal{C}_n = \left\{ \kappa \in \bigcup_{j} \mathcal{R}_j; \ 2^{-(n+1)} < |\kappa| \leq 2^{-n} \right\}.$$
Lower bound for the dimension: the construction

Let E be such that $\mathcal{H}^{d-\beta}(E) = 0$. Let \mathcal{R}_j be a 2^{-j}-covering of E by caps such that

$$\sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \leq 2^{-j}.$$

Define

$$\mathcal{C}_n = \left\{ \kappa \in \bigcup_j \mathcal{R}_j; \ 2^{-(n+1)} < |\kappa| \leq 2^{-n} \right\}.$$

$$\sum_{n \geq 1} \sum_{\kappa \in \mathcal{C}_n} |\kappa|^{d-\beta} \leq \sum_{j \geq 1} \sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \leq 1.$$
Lower bound for the dimension: the construction

Let \(E \) be such that \(\mathcal{H}^{d-\beta}(E) = 0 \). Let \(\mathcal{R}_j \) be a \(2^{-j} \)-covering of \(E \) by caps such that

\[
\sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \leq 2^{-j}.
\]

Define

\[
\mathcal{C}_n = \left\{ \kappa \in \bigcup_{j} \mathcal{R}_j; \ 2^{-(n+1)} < |\kappa| \leq 2^{-n} \right\}.
\]

\[
\sum_{n \geq 1} \sum_{\kappa \in \mathcal{C}_n} |\kappa|^{d-\beta} \leq \sum_{j \geq 1} \sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \leq 1.
\]

Choose \((\omega_n)_{n \geq 1} \) tending to infinity such that

\[
\sum_{n \geq 1} \omega_n \sum_{\kappa \in \mathcal{C}_n} |\kappa|^{d-\beta} < +\infty.
\]
Lower bound for the dimension: the construction

Let E be such that $\mathcal{H}^{d-\beta}(E) = 0$. Let \mathcal{R}_j be a 2^{-j}-covering of E by caps such that

$$\sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \leq 2^{-j}.$$

Define

$$C_n = \left\{ \kappa \in \bigcup_j \mathcal{R}_j; \ 2^{-(n+1)} < |\kappa| \leq 2^{-n} \right\}.$$

$$\sum_{n \geq 1} \sum_{\kappa \in C_n} |\kappa|^{d-\beta} \leq \sum_{j \geq 1} \sum_{\kappa \in \mathcal{R}_j} |\kappa|^{d-\beta} \leq 1.$$

Choose $(\omega_n)_{n \geq 1}$ tending to infinity such that

$$\sum_{n \geq 1} \omega_n \sum_{\kappa \in C_n} |\kappa|^{d-\beta} < +\infty.$$

Observe that $E \subset \lim \sup_n E_n$ where $E_n = \bigcup_{\kappa \in C_n} \kappa$.
Lower bound for the dimension: the function f

\[f = \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} \mathbb{1}_{4\kappa} \]
Lower bound for the dimension: the function f

$$f = \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} \| \mathbb{1}_{4\kappa} \|$$

$$\| f \|_1 \leq C \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} |\kappa|^d \leq C \sum_{n \geq 1} \omega_n \sum_{\kappa \in C_n} |\kappa|^{d-\beta} < +\infty.$$
Lower bound for the dimension: the function f

$$f = \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} \mathbb{1}_{4\kappa}$$

$$\|f\|_1 \leq C \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} |\kappa|^d \leq C \sum_{n \geq 1} \omega_n \sum_{\kappa \in C_n} |\kappa|^{d-\beta} < +\infty.$$

Let $y \in E_n = \bigcup_{\kappa \in C_n} \kappa$, $\kappa_0 \in C_n$ such that $y \in \kappa_0$ and $r = 1 - 2^{-n}$.
Lower bound for the dimension: the function f

\[f = \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} \mathbb{1}_{4\kappa} \]

\[\|f\|_1 \leq C \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} |\kappa|^d \leq C \sum_{n \geq 1} \omega_n \sum_{\kappa \in C_n} |\kappa|^{d-\beta} < +\infty. \]

Let $y \in E_n = \bigcup_{\kappa \in C_n} \kappa$, $\kappa_0 \in C_n$ such that $y \in \kappa_0$ and $r = 1 - 2^{-n}$.

\[P[f](ry) \geq \omega_n 2^{-n\beta} \int_{4\kappa_0} P(ry, \xi) d\sigma(\xi) \]
Lower bound for the dimension: the function f

$$f = \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} \mathbb{I}_{4\kappa}$$

$$\|f\|_1 \leq C \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} |\kappa|^d \leq C \sum_{n \geq 1} \omega_n \sum_{\kappa \in C_n} |\kappa|^{d-\beta} < +\infty.$$

Let $y \in E_n = \bigcup_{\kappa \in C_n} \kappa$, $\kappa_0 \in C_n$ such that $y \in \kappa_0$ and $r = 1 - 2^{-n}$.

$$P[f](ry) \geq \omega_n 2^{-n\beta} \int_{4\kappa_0} P(ry, \xi) d\sigma(\xi)$$

$$\geq \omega_n 2^{-n\beta} \int_{\kappa(y, 2^{-n})} P(ry, \xi) d\sigma(\xi).$$
Lower bound for the dimension: the function f

$$f = \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} I_{4\kappa}$$

$$\|f\|_1 \leq C \sum_{n \geq 1} \omega_n 2^{-n\beta} \sum_{\kappa \in C_n} |\kappa|^d \leq C \sum_{n \geq 1} \omega_n \sum_{\kappa \in C_n} |\kappa|^{d-\beta} < +\infty.$$

Let $y \in E_n = \bigcup_{\kappa \in C_n} \kappa$, $\kappa_0 \in C_n$ such that $y \in \kappa_0$ and $r = 1 - 2^{-n}$.

$$P[f](ry) \geq \omega_n 2^{-n\beta} \int_{4\kappa_0} P(ry, \xi) d\sigma(\xi)$$

$$\geq \omega_n 2^{-n\beta} \int_{\kappa(y,2^{-n})} P(ry, \xi) d\sigma(\xi)$$

$$\geq C \omega_n (1 - r)^{-\beta}.$$
The divergence index
The divergence index

Let \(f \in L^1(S_d) \) and \(y_0 \in S_d \).

\[
\beta(y_0) = \inf \left(\beta ; |P[f](ry_0)| = O((1 - r)^{-\beta}) \right)
\]
The divergence index

Let $f \in L^1(S_d)$ and $y_0 \in S_d$.

$$\beta(y_0) = \inf \left(\beta ; \ |P[f](ry_0)| = O((1 - r)^{-\beta}) \right)$$

$$= \limsup_{r \to 1} \frac{\log |P[f](ry_0)|}{- \log(1 - r)}.$$
The divergence index

Let $f \in L^1(S_d)$ and $y_0 \in S_d$.

$$\beta(y_0) = \inf \left(\beta ; \ |P[f](ry_0)| = O((1 - r)^{-\beta}) \right)$$

$$= \limsup_{r \to 1} \frac{\log |P[f](ry_0)|}{- \log(1 - r)}.$$

Level sets :

$$E(\beta, f) = \{ y \in S_d; \ \beta(y) = \beta \}.$$
The divergence index

Let \(f \in L^1(S_d) \) and \(y_0 \in S_d \).

\[
\beta(y_0) = \inf \left(\beta ; \ |P[f](ry_0)| = O((1 - r)^{-\beta}) \right)
\]

\[
= \limsup_{r \to 1} \frac{\log |P[f](ry_0)|}{-\log(1 - r)} .
\]

Level sets:

\[
E(\beta, f) = \{ y \in S_d ; \ \beta(y) = \beta \} .
\]

The family \((E(\beta, f))_\beta\) is a nonincreasing family of sets and the sets \((E(\beta, f))\) are disjoints.
The divergence index

Let \(f \in L^1(S_d) \) and \(y_0 \in S_d \).

\[
\beta(y_0) = \inf \left(\beta ; \ |P[f](ry_0)| = O((1 - r)^{-\beta}) \right)
= \limsup_{r \to 1} \frac{\log |P[f](ry_0)|}{-\log(1 - r)}.
\]

Level sets :

\[
E(\beta, f) = \{ y \in S_d ; \ \beta(y) = \beta \}.
\]

The family \((E(\beta, f))_\beta\) is a nonincreasing family of sets and the sets \((E(\beta, f))\) are disjoints.

Spectrum of singularities :

\[
\beta \mapsto \dim_H(E(\beta, f)).
\]
Multifractal behavior of $P[f]$

Of course, $E(\beta, f) \subset \bigcap_{\gamma < \beta} E(\gamma, f)$, so that

$$\dim_{\mathcal{H}} (E(\beta, f)) \leq d - \beta.$$
Multifractal behavior of $P[f]$

Of course, $E(\beta, f) \subset \bigcap_{\gamma < \beta} \mathcal{E}(\gamma, f)$, so that

$$\dim_{\mathcal{H}} (E(\beta, f)) \leq d - \beta .$$

Theorem (Bayart, H.)

For quasi-all functions $f \in L^1(S_d)$,*

$$\forall \beta \in [0, d], \quad \dim_{\mathcal{H}} (E(\beta, f)) = d - \beta .$$
Multifractal behavior of $P[f]$

Of course, $E(\beta, f) \subset \bigcap_{\gamma < \beta} \mathcal{E}(\gamma, f)$, so that

$$\dim_{\mathcal{H}} (E(\beta, f)) \leq d - \beta.$$

Theorem (Bayart, H.)

For quasi-all functions $f \in L^1(S_d)$,

$$\forall \beta \in [0, d], \quad \dim_{\mathcal{H}} (E(\beta, f)) = d - \beta.$$

- Roughly speaking, $|P[f](ry)| \approx (1 - r)^{-\beta}$ in a set with dimension $d - \beta$.

Multifractal behavior of $P[f]$

Of course, $E(\beta, f) \subset \bigcap_{\gamma < \beta} E(\gamma, f)$, so that

$$\dim_H(E(\beta, f)) \leq d - \beta.$$

Theorem (Bayart, H.)

For quasi-all functions $f \in L^1(S_d)$,

$$\forall \beta \in [0, d], \quad \dim_H(E(\beta, f)) = d - \beta.$$

- Roughly speaking, $|P[f](ry)| \approx (1 - r)^{-\beta}$ in a set with dimension $d - \beta$.
- “quasi-all” is related to the Baire category theorem.
Multifractal behavior of $P[f]$

Of course, $E(\beta, f) \subset \bigcap_{\gamma<\beta} \mathcal{E}(\gamma, f)$, so that

$$\dim_H(E(\beta, f)) \leq d - \beta.$$

Theorem (Bayart, H.)

For quasi-all functions $f \in L^1(S_d)$,

$$\forall \beta \in [0, d], \quad \dim_H(E(\beta, f)) = d - \beta.$$

- Roughly speaking, $|P[f](ry)| \approx (1 - r)^{-\beta}$ in a set with dimension $d - \beta$.
- “quasi-all” is related to the Baire category theorem.
- For such f we also have $\dim_H(\mathcal{E}(\beta, f)) = d - \beta$.
The analogue of dyadic numbers in the sphere S_d
The analogue of dyadic numbers in the sphere S_d

There exists a sequence $(\mathcal{R}_n)_{n \geq 1}$ of finite subsets of S^d satisfying

- $\mathcal{R}_n \subset \mathcal{R}_{n+1}$;
- $\bigcup_{x \in \mathcal{R}_n} \kappa(x, 2^{-n}) = S_d$;
- $\text{card}(\mathcal{R}_n) \leq C2^{nd}$;
- For any x, y in \mathcal{R}_n, $x \neq y$, then $|x - y| \geq 2^{-n}$.

If $\alpha > 1$, let $N_n,\alpha = \left\lfloor \frac{n}{\alpha} \right\rfloor + 1$ and $D_{n,\alpha} = \bigcup_{x \in \mathcal{R}_{N_n,\alpha}} \kappa(x, 2^{-n})$.

Proposition $\text{Hd}/\alpha(\limsup_{n \to +\infty} D_{n,\alpha}) = +\infty$.

Proof: mass transference principle.

Remark: we can replace n by a subsequence n_k.
The analogue of dyadic numbers in the sphere S_d

There exists a sequence $(\mathcal{R}_n)_{n \geq 1}$ of finite subsets of S^d satisfying

- $\mathcal{R}_n \subset \mathcal{R}_{n+1}$;
- $\bigcup_{x \in \mathcal{R}_n} \kappa(x, 2^{-n}) = S_d$;
- $\text{card} (\mathcal{R}_n) \leq C 2^{nd}$;
- For any x, y in \mathcal{R}_n, $x \neq y$, then $|x - y| \geq 2^{-n}$.

If $\alpha > 1$, let $N_{n, \alpha} = \lceil n/\alpha \rfloor + 1$ and

$$D_{n, \alpha} = \bigcup_{x \in \mathcal{R}_{N_{n, \alpha}}} \kappa(x, 2^{-n}).$$
The analogue of dyadic numbers in the sphere S_d

There exists a sequence $(\mathcal{R}_n)_{n \geq 1}$ of finite subsets of S^d satisfying

- $\mathcal{R}_n \subseteq \mathcal{R}_{n+1}$;
- $\bigcup_{x \in \mathcal{R}_n} \kappa(x, 2^{-n}) = S_d$;
- $\text{card} (\mathcal{R}_n) \leq C 2^{nd}$;
- For any x, y in \mathcal{R}_n, $x \neq y$, then $|x - y| \geq 2^{-n}$.

If $\alpha > 1$, let $N_{n, \alpha} = \lceil n/\alpha \rceil + 1$ and

$$D_{n, \alpha} = \bigcup_{x \in \mathcal{R}_{N_{n, \alpha}}} \kappa(x, 2^{-n}).$$

Proposition

$$\mathcal{H}^{d/\alpha} \left(\limsup_{n \to +\infty} D_{n, \alpha} \right) = +\infty.$$
The analogue of dyadic numbers in the sphere \(S_d \)

There exists a sequence \((R_n)_{n \geq 1} \) of finite subsets of \(S^d \) satisfying

- \(R_n \subset R_{n+1} \);
- \(\bigcup_{x \in R_n} \kappa(x, 2^{-n}) = S_d \);
- \(\text{card}(R_n) \leq C2^{nd} \);
- For any \(x, y \) in \(R_n \), \(x \neq y \), then \(|x - y| \geq 2^{-n} \).

If \(\alpha > 1 \), let \(N_{n, \alpha} = \lfloor n/\alpha \rfloor + 1 \) and

\[
D_{n, \alpha} = \bigcup_{x \in R_{N_{n, \alpha}}} \kappa(x, 2^{-n}).
\]

Proposition

\[
\mathcal{H}^{d/\alpha} \left(\limsup_{n \to +\infty} D_{n, \alpha} \right) = +\infty.
\]

Proof: mass transference principle.
The analogue of dyadic numbers in the sphere S_d

There exists a sequence $(\mathcal{R}_n)_{n \geq 1}$ of finite subsets of S^d satisfying

- $\mathcal{R}_n \subset \mathcal{R}_{n+1}$;
- $\bigcup_{x \in \mathcal{R}_n} \kappa(x, 2^{-n}) = S^d$;
- $\text{card}(\mathcal{R}_n) \leq C2^{nd}$;
- For any x, y in \mathcal{R}_n, $x \neq y$, then $|x - y| \geq 2^{-n}$.

If $\alpha > 1$, let $N_{n,\alpha} = \lceil n/\alpha \rceil + 1$ and

$$D_{n,\alpha} = \bigcup_{x \in \mathcal{R}_{N_{n,\alpha}}} \kappa(x, 2^{-n}).$$

Proposition

$$\mathcal{H}^{d/\alpha} \left(\limsup_{n \to +\infty} D_{n,\alpha} \right) = +\infty.$$

Proof: mass transference principle.
Remark: we can replace n by a subsequence n_k.
In the way of saturating functions

\[f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{K(x, 2^{2-n})}. \]
In the way of saturating functions

\[f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2^{n-2n})}. \]

Proposition

\(f_n \in L^1(S_d) \) and \(\|f_n\|_1 \leq C. \)

Moreover, for any \(\alpha > 1 \), for any \(y \in D_{n,\alpha} \),

\[P[f_n](r_n y) \geq \frac{C}{n} 2^{(n-N_{n,\alpha})d}, \]

where \(1 - r_n = 2^{-n} \), \(N_{n,\alpha} = \lceil n/\alpha \rceil + 1 \) and \(C \) is independent of \(n \) and \(\alpha \).
In the way of saturating functions

\[f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x, 2^{-2n})}. \]

Proposition

\(f_n \in L^1(S_d) \) and \(\|f_n\|_1 \leq C. \)

Moreover, for any \(\alpha > 1 \), for any \(y \in D_{n,\alpha} \),

\[P[f_n](r_n y) \geq \frac{C}{n} 2^{(n-N_{n,\alpha})d}, \]

where \(1 - r_n = 2^{-n} \), \(N_{n,\alpha} = \lfloor n/\alpha \rfloor + 1 \) and \(C \) is independent of \(n \) and \(\alpha \).

Remark: \(2^{(n-N_{n,\alpha})d} \approx (1 - r_n)^{-\beta} \) if \(\frac{d}{\alpha} = d - \beta \).
Proof of the proposition

\[f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2^{2-n})}. \]
Proof of the proposition

\[f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x, 2 \cdot 2^{-n})}. \]

Let \(y \in D_{n,\alpha} \) and let \(x_0 \in \mathcal{R}_{N_n, \alpha} \) such that \(y \in \kappa(x_0, 2^{-n}) \).
Proof of the proposition

\[f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2 \cdot 2^{-n})}. \]

Let \(y \in D_{n,\alpha} \) and let \(x_0 \in \mathcal{R}_{N_{n,\alpha}} \) such that \(y \in \kappa(x_0, 2^{-n}) \). Observe that \(\kappa(y, 2^{-n}) \subset \kappa(x_0, 2 \cdot 2^{-n}) \).
Proof of the proposition

\[f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x, 2^{2-n})}. \]

Let \(y \in D_{n,\alpha} \) and let \(x_0 \in \mathcal{R}_{N_{n,\alpha}} \) such that \(y \in \kappa(x_0, 2^{-n}) \).

Observe that \(\kappa(y, 2^{-n}) \subset \kappa(x_0, 2.2^{-n}) \).

Using the positivity of the Poisson kernel, we get

\[P[f_n](r_n y) \geq \frac{1}{n+1} \int_{\kappa(y, 2^{-n})} 2^{(n-N_{n,\alpha})d} P(r_n y, \xi) d\sigma(\xi) \]
Proof of the proposition

\[f_n := \frac{1}{n+1} \sum_{N=1}^{n+1} \sum_{x \in \mathcal{R}_N} 2^{(n-N)d} \mathbb{1}_{\kappa(x,2^{-n})}. \]

Let \(y \in D_{n,\alpha} \) and let \(x_0 \in \mathcal{R}_{N_n,\alpha} \) such that \(y \in \kappa(x_0, 2^{-n}) \).

Observe that \(\kappa(y, 2^{-n}) \subset \kappa(x_0, 2.2^{-n}) \).

Using the positivity of the Poisson kernel, we get

\[
P[f_n](r_n y) \geq \frac{1}{n+1} \int_{\kappa(y,2^{-n})} 2^{(n-N_{n,\alpha})d} P(r_n y, \xi) d\sigma(\xi) \\
\geq \frac{C}{n+1} 2^{(n-N_{n,\alpha})d}.
\]
Construction of a dense sequence

Proposition

There exists a dense sequence \((h_n)_{n \geq 1}\) in \(L^1(S_d)\) such that for any \(n \geq 1\), for any \(\alpha > 1\) and any \(y \in D_{n,\alpha}\),

\[
P[h_n](r_n y) \geq \frac{C}{n^2} 2^{(n-N_{n,\alpha})d},
\]

where \(r_n = 1 - 2^{-n}\).
Construction of a dense sequence

Proposition

There exists a dense sequence \((h_n)_{n \geq 1}\) in \(L^1(S_d)\) such that for any \(n \geq 1\), for any \(\alpha > 1\) and any \(y \in D_{n,\alpha}\),

\[
P[h_n](r_n y) \geq \frac{C}{n^2} 2^{(n-N_{n,\alpha})d},
\]

where \(r_n = 1 - 2^{-n}\).

Let \((g_n)_{n \geq 1}\) be a dense sequence of continuous functions such that \(\|g_n\|_\infty \leq n\).

\[
h_n = \frac{1}{n} f_n + g_n
\]
Construction of a dense sequence

Proposition

There exists a dense sequence \((h_n)_{n \geq 1}\) in \(L^1(S_d)\) such that for any \(n \geq 1\), for any \(\alpha > 1\) and any \(y \in D_{n,\alpha}\),

\[
P[h_n](r_n y) \geq \frac{C}{n^2} 2^{(n-N_{n,\alpha})d},
\]

where \(r_n = 1 - 2^{-n}\).

Let \((g_n)_{n \geq 1}\) be a dense sequence of continuous functions such that \(\|g_n\|_{\infty} \leq n\).

\[
h_n = \frac{1}{n} f_n + g_n
\]

\(\|P[g_n]\|_{\infty} \leq n\).
Construction of a dense sequence

Proposition

There exists a dense sequence \((h_n)_{n \geq 1}\) in \(L^1(S_d)\) such that for any \(n \geq 1\), for any \(\alpha > 1\) and any \(y \in D_{n,\alpha}\),

\[
P[h_n](r_n y) \geq \frac{C}{n^2} 2^{(n-N_{n,\alpha})d},
\]

where \(r_n = 1 - 2^{-n}\).

Let \((g_n)_{n \geq 1}\) be a dense sequence of continuous functions such that \(\|g_n\|_{\infty} \leq n\).

\[
h_n = \frac{1}{n} f_n + g_n
\]

\(\|P[g_n]\|_{\infty} \leq n\). Then, \(P[h_n](r_n y) \geq \frac{1}{n} P[f_n](r_n y) - n\).
The dense \mathcal{G}_δ set

The residual set we will consider is the dense G_δ-set

$$A = \bigcap_{k \geq 1} \bigcup_{n \geq k} B_{L^1}(h_n, \delta_n).$$

where δ_n is such that $\|f\|_1 \leq \delta_n \Rightarrow \|P[f](r_n \cdot)\|_\infty \leq 1.$
The dense G_δ set

The residual set we will consider is the dense G_δ-set

$$A = \bigcap_{k \geq 1} \bigcup_{n \geq k} B_{L^1}(h_n, \delta_n).$$

where δ_n is such that $\|f\|_1 \leq \delta_n \Rightarrow \|P[f](r_n \cdot)\|_\infty \leq 1$.

If $\|f - h_n\|_1 < \delta_n$,

$$P[f](r_n y) \geq P[h_n](r_n y) - 1 \geq C \frac{2^{(n-N_{n,\alpha})d}}{2n^2} - 1.$$
The dense G_δ set

The residual set we will consider is the dense G_δ-set

$$A = \bigcap \bigcup_{k \geq 1} \bigcup_{n \geq k} B_{L^1}(h_n, \delta_n).$$

where δ_n is such that $\|f\|_1 \leq \delta_n \Rightarrow \|P[f](r_n \cdot)\|_\infty \leq 1$.

If $\|f - h_n\|_1 < \delta_n$,

$$P[f](r_n y) \geq P[h_n](r_n y) - 1 \geq C \frac{2^{(n - N_{n,\alpha})d}}{2n^2} - 1.$$

$$\frac{\log |P[f](r_n y)|}{-\log(1 - r_n)} \geq \left(d - \frac{N_{n,\alpha}d}{n} \right) + o(1).$$

$$d - \frac{N_{n,\alpha}d}{n} \approx d - \frac{d}{\alpha} = \beta \quad \text{if} \quad \frac{d}{\alpha} = d - \beta.$$
The case of nonnegative harmonic functions

The set $\mathcal{H}^+(B_{d+1})$ of nonnegative harmonic functions in the ball B_{d+1} endowed with the topology of the locally uniform convergence is a closed cone in the space of all continuous functions in the ball: it satisfies Baire’s property.
The case of nonnegative harmonic functions

The set $\mathcal{H}^+(B_{d+1})$ of nonnegative harmonic functions in the ball B_{d+1} endowed with the topology of the locally uniform convergence is a closed cone in the space of all continuous functions in the ball: it satisfies Baire’s property.

Theorem

For quasi-all nonnegative harmonic functions h in the unit ball B_{d+1}, for any $\beta \in [0, d]$,

$$\dim_{\mathcal{H}} (E(\beta, h)) = d - \beta$$

where

$$E(\beta, h) = \left\{ y \in S_d ; \limsup_{r \to 1} \frac{\log h(ry)}{-\log(1-r)} = \beta \right\}.$$
Merci !