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Background

We consider real-valued Lipschitz functions f : X → R.
◮ If X is finite-dimensional, then there is a Rademacher theorem which

implies f is differentiable almost everywhere w.r.t. the Lebesgue
measure.

◮ If A ⊂ X is a set of positive measure and X is finite-dimensional,

then {x ∈ A : f is differentiable at x} is not empty.

1 What if A has measure 0?
2 What if X is infinite-dimensional?

1. For infinite-dimensional separable X , the dual X ∗ must be separable
as otherwise there is an equivalent norm on X which is everywhere
Fréchet non-differentiable.
2. X ∗ separable =⇒ every Lipschitz function is differentiable on a dense
subset of X [Preiss, 1990] and ...
...moreover, points of differentiability can be found inside any fixed
beforehand dense Gδ subset S of X satisfying the condition that S
contains a dense set of lines.

Universal Differentiability Set (UDS)

A Borel set S ⊆ X is a UDS if for every Lipschitz function f : X → R

there is an x ∈ S such that f is (Fréchet) differentiable at x .
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Background

Classical results: null subsets of R

Any null subset of R is a non-UDS.
Proof: Let |E | = 0, E ⊂ R. Choose open sets Gn s.t.
|G1| < ∞, R = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn ⊃ Gn+1 ⊃ · · · ⊃ E and

|Gn+1 ∩ C | ≤ 1
2n+1 |C | for every component C of Gn, n ≥ 1.

Let φ(t) = (−1)n if t ∈ Gn \ Gn+1; φ is defined a.e. on R (for t 6∈ ⋂

Gn).

The function f (x) =

∫ x

0

φ(t)dt : R → R is Lipschitz with the Lipschitz

constant 1.
Assume x ∈ E and (a, b) = C is the component of Gn containing x .
Then |C ∩ Gn+1| ≤ 1

2n+1 (b − a) and

∣

∣

∣

∣

f (b)− f (a)

b − a
− (−1)n

∣

∣

∣

∣

≤ 1

b − a

∫ b

a

∣

∣φ(t) − (−1)n
∣

∣dt

=
1

b − a

∫

C∩Gn+1

∣

∣φ(t) − (−1)n
∣

∣dt ≤ 2|C ∩ Gn+1|
b − a

≤ 1

2n
.
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Results in dimensions n ≥ 2

If n ≥ 2 one can choose a Gδ set S ⊆ R
n to contain all rational lines and

to have measure 0. Hence there are Lebesgue null universal
differentiability subsets of Rn, n ≥ 2.

X is infinite-dimensional =⇒ replacing rational lines with lines going in
directions of a countable dense subset of X , we get Gδ sets which are
examples of UDS in infinite-dimensional spaces.

1. The closure of the set constructed by Preiss is always equal to the
whole space.

2. M. Doré–O.M. (2010 + 2011): n ≥ 1 =⇒ R
n contains a compact

UDS of Hausdorff dimension 1 (so its Lebesgue measure is zero if n ≥ 2).

3. M. Doré–O.M. (2012): X ∗ separable =⇒ there is a closed bounded
totally disconnected UDS of Hausdorff dimension 1.

4. M. Dymond–O.M. (2013): In any R
n there is a (compact) UDS of

Minkowski (box counting) dimension 1 (and it is Hausdorff dim 1 too).
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Results in dimensions n ≥ 2 (cont.)

5. D. Preiss–G. Speight (2013):
n > m ≥ 1, ε > 0 =⇒ there is a set S ⊆ R

n of Hausdorff dimension less
than m+ ε such that it is a UDS w.r.t. Lipschitz f : Rn → R

m.

6. G. Alberti, M. Csörnyei, D. Preiss (2010): n = m = 2 =⇒ ∀S ⊂ R
2

of Lebesgue measure 0 is a non-UDS w.r.t. Lipschitz f : R2 → R
2.

7. M. Csörnyei–P. Jones (announced): n = m > 2 =⇒ ∀S ⊂ R
n of

Lebesgue measure 0 is a non-UDS w.r.t. Lipschitz f : Rn → R
n.
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UDS: necessary condition

Classical results: porosity implies non UDS

Let λ > 0. E ⊆ X is λ-porous at x ∈ X if for every r > 0 there is a
z ∈ B(x , r) such that B(z , λ‖z − x‖) ∩ E = ∅.

z

x

E is porous at x ∈ E ⇒
f (y) = dist(y ,E ) is 1-Lipschitz and
is not differentiable at x .

f (z) − f (x)

‖z − x‖ ≥ λ

E ⊆ X is porous if ∃λ > 0 s.t. it is
λ-porous at each of its points.

B. Kirchheim, D. Preiss, L. Zaj́ıček
(1980s):
Sigma-porous sets, countable unions
of porous sets, are also non UDS.
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UDS: sufficient condition

Curve non-porosity implies UDS
Approximation property (Dymond–O.M., 2013)

If n ≥ 2 and (Eλ)λ∈(0,1) ⊆ R
n is an increasing sequence of closed sets

satisfying the following approximation property :
for all 0 < λ < λ′ < 1 and η > 0
there is a threshold δ∗ = δ∗(λ, λ′, η) such that ∀ x ∈ Eλ, ‖e‖ = 1,
0 < δ < δ∗ =⇒
there exists [x ′, x ′ + δe ′] ⊆ Eλ′ with ‖x − x ′‖ < ηδ and ‖e − e ′‖ < η,

then each Eλ is a universal differentiability set.

(Dymond 2013)

Moreover, [x ′, x ′ + δe ′] ⊂ Eλ′ may be replaced by existence of γ,
a Lipschitz curve with γ(0) = x ′ and γ′(t) ≈

η
e ′ s.t.

H1(γ ∩ Eλ′) ≥ (1− η)H1(γ).
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Geometric measure theory

Equivalent definitions of a u.p.u. set

Theorem. G. Alberti, M. Csörnyei, D. Preiss (2010): S ⊆ R
n The

following two conditions are equivalent:

1 There exists a Lipschitz function f : Rn → R such that ∀x ∈ S and
∀‖e‖ = 1 the directional derivative f ′(x , e) does not exist

2 S is C -null for every cone C , i.e.
for every C = {v : ‖v − v0‖ < α} and for every ε > 0
there exists an open set Gε with S ⊆ Gε and

H1(γ ∩ Gε) ≤ ε

for every C 1-curve γ whose tangents lie in C .

u.p.u. ⇒ p.u.

Uniformly purely unrectifiable (u.p.u.) sets are purely (1-)unrectifiable:
their intersection with any smooth curve has 1-dimensional measure 0.
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Geometric measure theory - AP

u.p.u. ⇒ p.u.

Each uniformly purely unrectifiable set is purely (1-)unrectifiable:
its intersection with any smooth curve has 1-dimensional measure 0.

p.u. ⇒ u.p.u. (A. Mathé, 2014)

Each purely (1-)unrectifiable set is uniformly purely unrectifiable.

Approximation property

UDS =⇒ not u.p.u. =⇒ not p.u. =⇒ intersections with Lipschitz
curves around kernel points have positive measure.
Question: is AP necessarily satisfied?
Equivalently, are there UDS with kernel points without approximation in
some directions or approximations of too short length?
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Using AP to find a point of differentiability in a set

Assume we are proving that E ⊆ X is a UDS, i.e.
every Lipschitz function f : X → R has a point of differentiability in E .
How do we find a point of differentiability?

Step by step

We construct a sequence (xk , ek), xk ∈ E and ‖ek‖ = 1 such that
f ′(xk , ek) exists and is “almost maximal” among f ′(x , e) when x ∈ E ,
‖x − xk‖ is small and e is arbitrary direction.

xk → x∗, ek → e∗ and f ′(x∗, e∗) exists, is equal to lim f ′(xk , ek) and is
therefore ”almost maximal” in every neighbourhood of x∗.

We then prove f is differentiable at x∗ and f ′(x∗)(u) = f ′(x∗, e∗)〈u, e∗〉.
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Finding a point of differentiability

a=r/d

x* e*z

y

r
d

M = f ′(x∗, e∗) ≥ 0

f (y) > f (x∗) + εr
f (z) ≈ f (x∗)− f ′(x∗, e∗)d

f (y)− f (z)

‖y − z‖ ≥ Md + εr√
d2 + r2

=
M + εa√
1 + a2

> M + εa+ O(a2) > M + τ
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Finding a point of differentiability

r a=r/d

x* e*z

y

d

w

f (y)−f (z)
‖y−z‖ > f ′(x∗, e∗) + τ , τ > 0 is fixed

Therefore there exists w ∈ [y , z] such that f ′(w , y−z
‖y−z‖ ) > f ′(x∗, e∗) + τ

If [y , z] ⊆ E , we get a contradiction.

Thus f ′(x∗, e∗⊥) = 0.
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Hausdorff and Minkowski dimension

Hausdorff dimension

Hp(A) = lim
δ↓0

inf
{

∑

i

diam(Ei )
p : A ⊆

⋃

i

Ei , diam(Ei) ≤ δ
}

.

is the p-dimensional Hausdorff measure of A.

Hausdorff dimension:

dimH(A) = inf{p : Hp(A) = 0}.

Minkowski (box counting) dimension

Now for each δ > 0 let Nδ be the minimal possible number of balls of
radius δ with which it is possible to cover A. Then

dimM(A)/dimM(A) = inf{p : limδ↓0/limδ↓0Nδδ
p = 0}

is the upper (lower) Minkowski dimension of A.
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Properties of UDS

E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩ Df )| > 0 for all P ∈ X ∗ \ {0}
Theorem (Zahorski ’46, Fowler-Preiss ’09): Given any Gδ set G ⊆ R of
measure zero, there exists a Lipschitz function g : R → R with Lipschitz
constant 1, which is differentiable everywhere outside G and for any
x ∈ G , g ′

±(x) = ±1.

Assume |P(E ∩ Df )| = 0, let G ⊇ P(E ∩ Df ) be a Gδ set of measure 0.
Let Pe = 1 and F := f + 2‖e‖Lip(f )g ◦ P . Then E ∩DF = ∅.

(weak Projection property)

E is a UDS =⇒ dimM(E ) ≥ dimM(E ) ≥ dimH(E ) ≥ 1

Assume dimH(E ) < 1; let P ∈ X ∗ \ {0}.
dimH(P(E )) < 1 ⇒ S = P(E ) ⊆ R is Lebesgue null.

If dimM(E ) = 1 and E is a UDS then dimM(E ) = dimH(E ) = 1.

E is a UDS =⇒ H1(E ) = ∞, even not σ-finite
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Projection property - weak and strong

1. Weak PP:
E UDS, f Lipschitz =⇒ |P(E )| ≥ |P(E ∩Df )| > 0 for all P ∈ X ∗ \ {0}.
2. Strong PP:
If E satisfies curve approximation property then
P(D ∩ B(x , r)) has a full measure on (Px −∆,Px +∆), ∆ > 0.
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Construction in the finite-dimensional case (Dymond-O.M.,
2013)

k
W

R = Rk+1 = Qs , Q > 1, wk+1 = wk/R

Total number of cubes wk+1 × wk+1:
0. R red cubes
1. R + a× Qs + aQ × Qs−1 + · · ·+

+aQs−1 × Q ∼ asQs = aR logR
7→ in ’many directions’ abR logR
2. Repeat for ∀ new tube =⇒ R(ab logR)2

3. Again and again: R(ab logR)m cubes.

Nwk+1
≤ Nwk

× R(c logR)m

As p > 1,
Nwk+1

w
p

k+1

Nwk
w

p

k

≤ (c logR)mR1−p < 1, R large

For δ ∈ (wk+1,wk): Nδδ
p ≤ Nwk+1

w
p
k = Nwk+1

w
p
k+1R

p.

We show: Nwk+1
w

p
k+1R

p
k+1 → 0
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Further ideas (Dymond-O.M., 2014)

k
W

Can we get Nwk+1
≤ Nwk

× RΦ(R)
for any Φ(R) ր ∞ chosen in advance?

Describe the class of gauge functions f
for which
Mf (N) = limδ>0Nδf (δ) or
Mf (N) = limδ>0Nδf (δ)
is finite.

We know limδ→0 Nδδ is infinite ∀ UDS
but it’s possible Nδδ

p → 0 ∀ p > 1.

Question

Can we find UDS with dimension function strictly between
x and xp, p > 1?
Conjecture: Yes, but not below x/ log x .
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Open questions

Typical behaviour on non-UDS

Recall Alberti, Csörnyei, Preiss and Jones, Csörnyei show
∀E ⊂ R

n null sets there exists f : Rn → R
n Lipschitz which is nowhere

differentiable on E .
Are some sets better than other?

D. Preiss–J. Tǐser (1995): Let E ⊂ [0, 1]. A typical Lipschitz function
f : R → R is differentiable at no point of E if and only if E is contained
in a null Fσ subset of [0, 1].
Careful: In case R

n → R mappings there are closed UDS!
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