LOWEST FRACTAL DIMENSIONS FOR UNIVERSAL DIFFERENTIABILITY

Olga Maleva University of Birmingham, UK

Genericity and Small sets in Analysis Esneux May 28, 2015

Background

We consider real-valued Lipschitz functions $f : X \to \mathbb{R}$.

- ▶ If X is finite-dimensional, then there is a *Rademacher theorem* which implies f is differentiable almost everywhere w.r.t. the Lebesgue measure.
 - If A ⊂ X is a set of positive measure and X is finite-dimensional, then {x ∈ A : f is differentiable at x} is not empty.
- What if A has measure 0?
- What if X is infinite-dimensional?

1. For infinite-dimensional separable X, the dual X^* must be separable as otherwise there is an equivalent norm on X which is everywhere Fréchet non-differentiable.

2. X^* separable \implies every Lipschitz function is differentiable on a dense subset of X [Preiss, 1990] and ...

...moreover, points of differentiability can be found inside any fixed beforehand dense G_{δ} subset S of X satisfying the condition that S contains a dense set of lines.

Universal Differentiability Set (UDS)

A Borel set $S \subseteq X$ is a UDS if for every Lipschitz function $f : X \to \mathbb{R}$ there is an $x \in S$ such that f is (Fréchet) differentiable at x.

Background

Classical results: null subsets of \mathbb{R}

Any null subset of \mathbb{R} is a non-UDS. Proof: Let |E| = 0, $E \subset \mathbb{R}$. Choose open sets G_n s.t. $|G_1| < \infty, \mathbb{R} = G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_n \supset G_{n+1} \supset \cdots \supset E$ and $|G_{n+1} \cap C| \leq \frac{1}{2^{n+1}}|C|$ for every component C of G_n , $n \geq 1$. Let $\phi(t) = (-1)^n$ if $t \in G_n \setminus G_{n+1}$; ϕ is defined *a.e.* on \mathbb{R} (for $t \notin \bigcap G_n$). The function $f(x) = \int_{0}^{x} \phi(t) dt : \mathbb{R} \to \mathbb{R}$ is Lipschitz with the Lipschitz constant 1. Assume $x \in E$ and (a, b) = C is the component of G_n containing x. Then $|C \cap G_{n+1}| \leq \frac{1}{2n+1}(b-a)$ and $\left|\frac{f(b)-f(a)}{b-a}-(-1)^{n}\right| \leq \frac{1}{b-a}\int_{-1}^{b} |\phi(t)-(-1)^{n}| dt$

$$=\frac{1}{b-a}\int_{\mathcal{C}\cap G_{n+1}}\bigl|\phi(t)-(-1)^n\bigr|dt\leq \frac{2|\mathcal{C}\cap G_{n+1}|}{b-a}\leq \frac{1}{2^n}.$$

If $n \ge 2$ one can choose a G_{δ} set $S \subseteq \mathbb{R}^n$ to contain all rational lines and to have measure 0. Hence there are *Lebesgue null* universal differentiability subsets of \mathbb{R}^n , $n \ge 2$.

X is infinite-dimensional \implies replacing rational lines with lines going in directions of a countable dense subset of X, we get G_{δ} sets which are examples of UDS in infinite-dimensional spaces.

1. The <u>closure</u> of the set constructed by Preiss is always equal to the whole space.

2. M. Doré–O.M. (2010 + 2011): $n \ge 1 \implies \mathbb{R}^n$ contains a compact UDS of Hausdorff dimension 1 (so its Lebesgue measure is zero if $n \ge 2$).

3. M. Doré–O.M. (2012): X^* separable \implies there is a closed bounded totally disconnected UDS of Hausdorff dimension 1.

4. M. Dymond–O.M. (2013): In any \mathbb{R}^n there is a (compact) UDS of Minkowski (box counting) dimension 1 (and it is Hausdorff dim 1 too).

5. D. Preiss-G. Speight (2013):

 $n > m \ge 1$, $\varepsilon > 0 \implies$ there is a set $S \subseteq \mathbb{R}^n$ of Hausdorff dimension less than $m + \varepsilon$ such that it is a UDS w.r.t. Lipschitz $f : \mathbb{R}^n \to \mathbb{R}^m$.

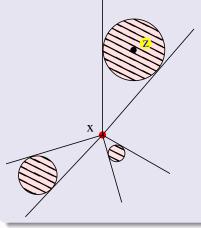
6. G. Alberti, M. Csörnyei, D. Preiss (2010): $n = m = 2 \implies \forall S \subset \mathbb{R}^2$ of Lebesgue measure 0 is a non-UDS w.r.t. Lipschitz $f : \mathbb{R}^2 \to \mathbb{R}^2$.

7. M. Csörnyei–P. Jones (announced): $n = m > 2 \implies \forall S \subset \mathbb{R}^n$ of Lebesgue measure 0 is a non-UDS w.r.t. Lipschitz $f : \mathbb{R}^n \to \mathbb{R}^n$.

UDS: necessary condition

Classical results: porosity implies non UDS

Let $\lambda > 0$. $E \subseteq X$ is λ -porous at $x \in X$ if for every r > 0 there is a $z \in B(x, r)$ such that $B(z, \lambda || z - x ||) \cap E = \emptyset$.



E is porous at $x \in E \Rightarrow$ f(y) = dist(y, E) is 1-Lipschitz and is not differentiable at *x*.

$$\frac{f(z)-f(x)}{\|z-x\|} \ge \lambda$$

 $E \subseteq X$ is porous if $\exists \lambda > 0$ s.t. it is λ -porous at each of its points.

B. Kirchheim, D. Preiss, L. Zajíček (1980s):

Sigma-porous sets, countable unions of porous sets, are also non UDS.

UDS: sufficient condition

Curve non-porosity implies UDS Approximation property (Dymond–O.M., 2013)

If $n \ge 2$ and $(E_{\lambda})_{\lambda \in (0,1)} \subseteq \mathbb{R}^{n}$ is an increasing sequence of closed sets satisfying the following *approximation property*: for all $0 < \lambda < \lambda' < 1$ and $\eta > 0$ there is a threshold $\delta^{*} = \delta^{*}(\lambda, \lambda', \eta)$ such that $\forall x \in E_{\lambda}$, ||e|| = 1, $0 < \delta < \delta^{*} \implies$ there exists $[x', x' + \delta e'] \subseteq E_{\lambda'}$ with $||x - x'|| < \eta \delta$ and $||e - e'|| < \eta$,

then each E_{λ} is a universal differentiability set.

(Dymond 2013)

Moreover, $[x', x' + \delta e'] \subset E_{\lambda'}$ may be replaced by existence of γ , a Lipschitz curve with $\gamma(0) = x'$ and $\gamma'(t) \approx_{\eta} e'$ s.t. $\mathcal{H}^1(\gamma \cap E_{\lambda'}) \ge (1 - \eta)\mathcal{H}^1(\gamma).$

Equivalent definitions of a u.p.u. set

Theorem. G. Alberti, M. Csörnyei, D. Preiss (2010): $S \subseteq \mathbb{R}^n$ The following two conditions are equivalent:

- There exists a Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ such that $\forall x \in S$ and $\forall ||e|| = 1$ the directional derivative f'(x, e) does not exist
- S is C-null for every cone C, i.e. for every C = {v : ||v − v₀|| < α} and for every ε > 0 there exists an open set G_ε with S ⊆ G_ε and

 $\mathcal{H}^1(\gamma \cap \mathit{G}_{\varepsilon}) \leq \varepsilon$

for every C^1 -curve γ whose tangents lie in C.

u.p.u. \Rightarrow p.u.

Uniformly purely unrectifiable (u.p.u.) sets are **purely (1-)unrectifiable**: their intersection with any smooth curve has 1-dimensional measure 0.

$u.p.u. \ \Rightarrow \ p.u.$

Each uniformly purely unrectifiable set is **purely (1-)unrectifiable**: its intersection with any smooth curve has 1-dimensional measure 0.

p.u. \Rightarrow u.p.u. (A. Mathé, 2014)

Each purely (1-)unrectifiable set is uniformly purely unrectifiable.

Approximation property

 $UDS \implies$ not u.p.u. \implies not p.u. \implies intersections with Lipschitz curves around *kernel points* have positive measure. Question: is AP necessarily satisfied? Equivalently, are there UDS with *kernel points* without approximation in some directions or approximations of too short length? Assume we are proving that $E \subseteq X$ is a UDS, i.e. every Lipschitz function $f: X \to \mathbb{R}$ has a point of differentiability in E. How do we find a point of differentiability?

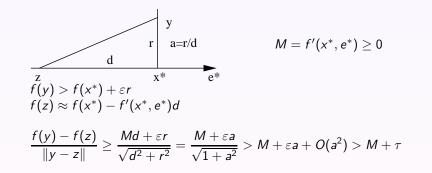
Step by step

We construct a sequence (x_k, e_k) , $x_k \in E$ and $||e_k|| = 1$ such that $f'(x_k, e_k)$ exists and is "almost maximal" among f'(x, e) when $x \in E$, $||x - x_k||$ is small and e is arbitrary direction.

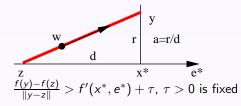
 $x_k \to x^*$, $e_k \to e^*$ and $f'(x^*, e^*)$ exists, is equal to $\lim f'(x_k, e_k)$ and is therefore "almost maximal" in every neighbourhood of x^* .

We then prove f is differentiable at x^* and $f'(x^*)(u) = f'(x^*, e^*)\langle u, e^* \rangle$.

Finding a point of differentiability



Finding a point of differentiability



Therefore there exists $w \in [y, z]$ such that $f'(w, \frac{y-z}{\|y-z\|}) > f'(x^*, e^*) + \tau$

If $[y, z] \subseteq E$, we get a contradiction.

Thus $f'(x^*, e^{*\perp}) = 0$.

Hausdorff and Minkowski dimension

Hausdorff dimension

$$\mathcal{H}^{p}(A) = \lim_{\delta \downarrow 0} \inf \Big\{ \sum_{i} \operatorname{diam}(E_{i})^{p} : A \subseteq \bigcup_{i} E_{i}, \operatorname{diam}(E_{i}) \leq \delta \Big\}.$$

is the *p*-dimensional Hausdorff measure of *A*.

Hausdorff dimension:

$$\dim_{\mathcal{H}}(A) = \inf\{p : \mathcal{H}^p(A) = 0\}.$$

Minkowski (box counting) dimension

Now for each $\delta > 0$ let N_{δ} be the minimal possible number of balls of radius δ with which it is possible to cover A. Then

$$\overline{\dim}_{\mathcal{M}}(A)/\underline{\dim}_{\mathcal{M}}(A) = \inf\{p : \overline{\lim}_{\delta \downarrow 0}/\underline{\lim}_{\delta \downarrow 0} N_{\delta} \delta^{p} = 0\}$$

is the upper (lower) Minkowski dimension of A.

Properties of UDS

E UDS, f Lipschitz $\implies |P(E)| \ge |P(E \cap D_f)| > 0$ for all $P \in X^* \setminus \{0\}$

Theorem (Zahorski '46, Fowler-Preiss '09): Given any G_{δ} set $G \subseteq \mathbb{R}$ of measure zero, there exists a Lipschitz function $g : \mathbb{R} \to \mathbb{R}$ with Lipschitz constant 1, which is differentiable everywhere outside G and for any $x \in G$, $g'_{\pm}(x) = \pm 1$.

Assume $|P(E \cap D_f)| = 0$, let $G \supseteq P(E \cap D_f)$ be a G_{δ} set of measure 0. Let Pe = 1 and $F := f + 2||e|| \operatorname{Lip}(f)g \circ P$. Then $E \cap D_F = \emptyset$.

(weak Projection property)

 $E \text{ is a UDS} \implies \overline{\dim}_{\mathcal{M}}(E) \geq \underline{\dim}_{\mathcal{M}}(E) \geq \dim_{\mathcal{H}}(E) \geq 1$

Assume $\dim_{\mathcal{H}}(E) < 1$; let $P \in X^* \setminus \{0\}$.

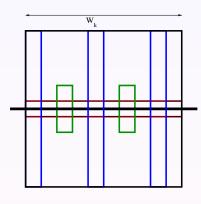
 $\dim_{\mathcal{H}}(P(E)) < 1 \quad \Rightarrow \quad S = P(E) \subseteq \mathbb{R}$ is Lebesgue null.

If $\overline{\dim}_{\mathcal{M}}(E) = 1$ and E is a UDS then $\dim_{\mathcal{M}}(E) = \dim_{\mathcal{H}}(E) = 1$.

E is a UDS $\implies \mathcal{H}^1(E) = \infty$, even not σ -finite

1. Weak PP: $E \text{ UDS, } f \text{ Lipschitz } \implies |P(E)| \ge |P(E \cap D_f)| > 0 \text{ for all } P \in X^* \setminus \{0\}.$ 2. Strong PP: If E satisfies curve approximation property then $P(D \cap B(x, r))$ has a full measure on $(Px - \Delta, Px + \Delta), \Delta > 0.$

Construction in the finite-dimensional case (Dymond-O.M., 2013)



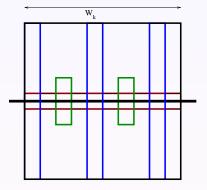
$$R = R_{k+1} = Q^s$$
, $Q > 1$, $w_{k+1} = w_k/R$

Total number of cubes $w_{k+1} \times w_{k+1}$: 0. R red cubes 1. $R + a \times Q^s + aQ \times Q^{s-1} + \cdots +$ $+aQ^{s-1} \times Q \sim asQ^s = aR \log R$ \mapsto in 'many directions' *abR* log *R* 2. Repeat for \forall new tube \implies $R(ab \log R)$ 3. Again and again: $R(ab \log R)^m$ cubes. $N_{w_{k+1}} \leq N_{w_k} \times R(c \log R)^m$ As p > 1, $rac{N_{w_{k+1}^{-}}w_{k+1}^{p}}{N_{w_{*}}w_{k}^{p}} \leq (c \log R)^{m}R^{1-p} < 1$, R large

For $\delta \in (w_{k+1}, w_k)$: $N_{\delta}\delta^p \leq N_{w_{k+1}}w_k^p = N_{w_{k+1}}w_{k+1}^p R^p$.

We show:
$$N_{w_{k+1}}w_{k+1}^p R_{k+1}^p o 0$$

Further ideas (Dymond-O.M., 2014)



Can we get $N_{w_{k+1}} \leq N_{w_k} \times R\Phi(R)$ for any $\Phi(R) \nearrow \infty$ chosen in advance?

Describe the class of gauge functions ffor which $\overline{\mathcal{M}_f}(N) = \overline{\lim}_{\delta > 0} N_{\delta} f(\delta)$ or $\underline{\mathcal{M}_f}(N) = \underline{\lim}_{\delta > 0} N_{\delta} f(\delta)$ is finite.

We know $\lim_{\delta\to 0} N_{\delta}\delta$ is infinite \forall UDS but it's possible $N_{\delta}\delta^p \to 0 \ \forall \ p > 1$.

Question

Can we find UDS with dimension function strictly between x and x^p , p > 1? Conjecture: Yes, but not below $x/\log x$.

Typical behaviour on non-UDS

Recall Alberti, Csörnyei, Preiss and Jones, Csörnyei show $\forall E \subset \mathbb{R}^n$ null sets there exists $f : \mathbb{R}^n \to \mathbb{R}^n$ Lipschitz which is nowhere differentiable on E.

Are some sets better than other?

D. Preiss–J. Tišer (1995): Let $E \subset [0, 1]$. A typical Lipschitz function $f : \mathbb{R} \to \mathbb{R}$ is differentiable at no point of E if and only if E is contained in a null F_{σ} subset of [0, 1]. *Careful:* In case $\mathbb{R}^n \to \mathbb{R}$ mappings there are closed UDS!