When is a positive cone
Haar null?

(joint with J. Esterle and P. Moreau)



All Banach spaces are real and infinite-dimensional.



Haar null sets

Thanks to Frédéric, you all know the definition: a Borel set A in
a separable Banach space X is Haar null if there exists a Borel
probability measure p on X such that

WA+ x)=0 forall xe X.



Starting point

Matouskova—Stegall: Haar null sets characterize reflexivity. Pre-
cisely: A separable Banach space X is reflexive if and only if every
closed convex set C C X with empty interior is Haar null.

Vague question. What about “special’ closed convex sets with
empty interior in nonreflexive spaces?



Positive cones

e = (&j)i>1 basic sequence in X
oo
Q" (e) Z:{ZX; e Xj > 0}
i=1
(Closed convex set with empty interior in [e] := Span {e;; i > 1}.)

Precise question. When is Q" (e) Haar null in [e]?

Remark. Q% (e) is never Gauss null.



Two simple examples

Example 1. The positive cone of /1 is Haar null.

Proof. Let (§;)i>1 be a sequence of independent (real) random
variables with P(§; = 0) = 1 — 1 and P(§ = —3) = 1. Then
il = %2 so that £ := (&1,&,...) € 1 almost surely. Let p
be the distribution of the random variable & (measure on ¢1). If

x =(x;) € £1 and x <0, then

WQF+x)=PE>x)=T[PE&>x)= [l (1-1Y=o0.

ieN {iyxi>=1/i}

Example 2. The positive cone of ¢y contains a translate of every
compact set, so it is not Haar null.

Proof. If K C ¢p is compact, then it is “uniformly " :

i—00
aj = sup sup|xj]——0.
x=(x)€K j>i

So a:=(aj) € g, and K+ a C QF.



A tempting “conjecture”

Assume that e is a normalized and unconditional basic sequence.
Then Q7 (e) is not Haar null if and only if e is equivalent to the
canonical basis of ¢.



A remark to keep in mind

e = (&) basic sequence
e To show that e ~ ¢y means to get estimates of the form

cllal|eo < ‘ < Cllaljee  for a=(ai) € coo.

> aiej
1

e If e is normalized, the lower estimate is for free. So one just need
to check the upper estimate

< Cllalloo -

>_aiej
1




A weaker version of the conjecture

Say that a set @ C X is a “compact-catcher” if it contains a trans-
late of every compact set.

Theorem 1. The conjecture holds true if “not Haar null” is replaced
with “compact-catcher”: if e is a normalized unconditional basic
sequence such that Q% (e) is a compact-catcher, then e ~ ¢.

Remark. False without the unconditionality assumption. Exam-
ple: the canonical basis of the James’ space has a compact-catcher
positive cone.



Proof of Theorem 1 (sketch)

Key lemma 1. Assume that e = (e;) is normalized. Then, Q% (e)
is a compact-catcher if and only if one can find a sequence (\;) with
A; > 1 such that

doAie

i=1

sup < 00.

n>1

Key lemma 1 + unconditionality = upper estimate:

< Calloo-

> ai€
1
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< K lalloe ‘

doAie




Proof of Key lemma 1 (only if part)

Fact. If Q*(e) is a compact-catcher, one can find M < oo such
that the following holds: for any finite set F C B(0,1), there exists
z € X such that ||z|| < M and z + F C Q™ (e).

Now, define
Fr ={—e; 1<i<k} (k>1).
Fact = there exists zx = ), zj xe; such that ||z|| < M and
Zk+F € Q" (e).
> ||zx]| < M = the z \ are bounded (e normalized);
> Z,'7k2 1 iszl..

k—00

WLOG z; y —— A; > 1 for all i € N; and then

< KM for all n € N.

n
Aiej
i—1

I=

n
= lim Z Z; k€j
k—o00 i=1 ’



Block sequences

Block sequence of e = (&;): sequence f = (fj);>1 iof the form

pi—1
6': Za,-e,- 1<p<p<...)

i=pj_1

Block sequence lemma. Assume that e is unconditional. If e has
a block sequence f such that QT (f) is Haar null in [f], then Q" (e)
is Haar null in [e].

Consequence. If Q1 (e) is not Haar null, then every block sequence
of e has a further block sequence equivalent to the canonical basis
of ¢p. (Follows from Matouskova—Stegall + James’ characterization of
reflexivity.)



co-saturation of block sequences
e unconditional

Theorem 2. If Q" (e) is not Haar null, then every normalized block-
sequence of e has a subsequence equivalent to the canonical basis
of ¢o (with uniform bounds on the implied constants).

Remark. Something stronger holds true. But still not enough to
ensure that e ~ ¢.



Proof of Theorem 2 (sketch)

Enough: to show that e itself has a ¢y subsequence (assuming e is
normalized and unconditional, with Q*(e) not Haar null).

Key lemma 2. One can find § > 0 and C < oo such that the
following holds: for every finite set | C N, there exists J C | such
that

|J| >4l and

Ze,- SC

iel

Define
J = {J C N finite; HZIEJ e,'H < C}.

Key lemma 2 + Ptak's Lemma = there exists an infinite set
I C N such that every finite subset of I belongs to J.

Unconditionality = upper estimate for (e&;);cr (as before).



Proof of Key lemma 2

Fact. Assuming that Q*(e) is not Haar null, one can find § > 0 and
R < oo such that the following holds: for every probability measure
p supported on B(0,1), there exists x € X such that ||x|| < R and
p(x+ Q*(e)) > 4.

Now, I C N finite. Apply the Fact with

po= % D0 -

icl
This gives x = >_7° xje; with ||x|| < R such that
|J| >0 |l] where J={iel, x;<-1}.

Then ||X;c, 6i||< K [|x]|< KR := C by unconditionality.



co-saturation of quotients

Theorem 3. Let X be a Banach space, and assume that X has an
unconditional basis whose positive cone is not Haar null. Then any
quotient E of X is cp-saturated: every infinite-dimensional subspace
of E has a further subspace isomorphic to cy.

Remark 1. Again, not enough to prove the conjecture. Example:
the Schreier space S has c¢y-saturated quotients (Odell 1992).

Remark 2. Little to do with Haar null sets. Say that a Banach
space X has Property (P) if every weakly null normalized sequence
in X has a subsequence equivalent to the canonical basis basis of
co. Key lemma 3: if X has (P) and admits an unconditional basis
e with no {1 block sequence, then every quotient of X has (P).



