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All Banach spaces are real and infinite-dimensional.



Haar null sets

Thanks to Frédéric, you all know the definition: a Borel set A in
a separable Banach space X is Haar null if there exists a Borel
probability measure µ on X such that

µ(A + x) = 0 for all x ∈ X .



Starting point

Matouskova–Stegall: Haar null sets characterize reflexivity. Pre-
cisely: A separable Banach space X is reflexive if and only if every
closed convex set C ⊆ X with empty interior is Haar null.

Vague question. What about “special” closed convex sets with
empty interior in nonreflexive spaces?



Positive cones

e = (ei )i≥1 basic sequence in X

Q+(e) :=

{ ∞∑
i=1

xi ei ; xi ≥ 0

}
(Closed convex set with empty interior in [e] := span {ei ; i ≥ 1}.)

Precise question. When is Q+(e) Haar null in [e]?

Remark. Q+(e) is never Gauss null.



Two simple examples

Example 1. The positive cone of `1 is Haar null.

Proof. Let (ξi )i≥1 be a sequence of independent (real) random
variables with P(ξi = 0) = 1 − 1

i and P(ξi = −1
i ) = 1

i · Then
‖ξi‖L1 = 1

i2
, so that ξ := (ξ1, ξ2, . . . ) ∈ `1 almost surely. Let µ

be the distribution of the random variable ξ (measure on `1). If
x = (xi ) ∈ `1 and x ≤ 0, then

µ(Q+ + x)= P(ξ ≥ x)=
∏
i∈N

P(ξi ≥ xi )=
∏

{i ; xi>−1/i}

(
1− 1

i

)
= 0 .

Example 2. The positive cone of c0 contains a translate of every
compact set, so it is not Haar null.

Proof. If K ⊆ c0 is compact, then it is “uniformly c0” :

αi := sup
x=(xj )∈K

sup
j≥i
|xj |

i→∞−−−→ 0 .

So α := (αi ) ∈ c0, and K + α ⊆ Q+.



A tempting “conjecture”

Assume that e is a normalized and unconditional basic sequence.
Then Q+(e) is not Haar null if and only if e is equivalent to the
canonical basis of c0.



A remark to keep in mind

e = (ei ) basic sequence

• To show that e ∼ c0 means to get estimates of the form

c ‖a‖∞ ≤
∥∥∥∥∑

i
aiei

∥∥∥∥ ≤ C ‖a‖∞ for a = (ai ) ∈ c00.

• If e is normalized, the lower estimate is for free. So one just need
to check the upper estimate∥∥∥∥∑

i
aiei

∥∥∥∥ ≤ C ‖a‖∞ .



A weaker version of the conjecture

Say that a set Q ⊆ X is a “compact-catcher” if it contains a trans-
late of every compact set.

Theorem 1. The conjecture holds true if “not Haar null” is replaced
with “compact-catcher”: if e is a normalized unconditional basic
sequence such that Q+(e) is a compact-catcher, then e ∼ c0.

Remark. False without the unconditionality assumption. Exam-
ple: the canonical basis of the James’ space has a compact-catcher
positive cone.



Proof of Theorem 1 (sketch)

Key lemma 1. Assume that e = (ei ) is normalized. Then, Q+(e)
is a compact-catcher if and only if one can find a sequence (λi ) with
λi ≥ 1 such that

sup
n≥1

∥∥∥∥ n∑
i=1

λiei

∥∥∥∥<∞.
Key lemma 1 + unconditionality =⇒ upper estimate:∥∥∥∥∑

i
aiei

∥∥∥∥=

∥∥∥∥∑
i

ai
λi
λiei

∥∥∥∥≤ K ‖a‖∞
∥∥∥∥∑

i
λiei

∥∥∥∥ ≤ C ‖a‖∞.



Proof of Key lemma 1 (only if part)

Fact. If Q+(e) is a compact-catcher, one can find M < ∞ such
that the following holds: for any finite set F ⊆ B(0, 1), there exists
z ∈ X such that ‖z‖ ≤ M and z + F ⊆ Q+(e).

Now, define

Fk := {−ei ; 1 ≤ i ≤ k} (k ≥ 1).

Fact =⇒ there exists zk =
∑

i zi ,kei such that ‖zk‖ ≤ M and
zk+Fk ⊆ Q+(e).

I ‖zk‖ ≤ M =⇒ the zi ,k are bounded (e normalized);

I zi ,k ≥ 1 if k ≥ i .

WLOG zi ,k
k→∞−−−→ λi ≥ 1 for all i ∈ N; and then∥∥∥∥ n∑

i=1
λiei

∥∥∥∥= lim
k→∞

∥∥∥∥ n∑
i=1

zi ,kei

∥∥∥∥≤ KM for all n ∈ N.



Block sequences

Block sequence of e = (ei ): sequence f = (fj)j≥1 ¿of the form

fj =

pj−1∑
i=pj−1

aiei (1 ≤ p0 < p1 < . . . )

Block sequence lemma. Assume that e is unconditional. If e has
a block sequence f such that Q+(f) is Haar null in [f], then Q+(e)
is Haar null in [e].

Consequence. If Q+(e) is not Haar null, then every block sequence
of e has a further block sequence equivalent to the canonical basis
of c0. (Follows from Matouskova–Stegall + James’ characterization of

reflexivity.)



c0-saturation of block sequences

e unconditional

Theorem 2. If Q+(e) is not Haar null, then every normalized block-
sequence of e has a subsequence equivalent to the canonical basis
of c0 (with uniform bounds on the implied constants).

Remark. Something stronger holds true. But still not enough to
ensure that e ∼ c0.



Proof of Theorem 2 (sketch)

Enough: to show that e itself has a c0 subsequence (assuming e is

normalized and unconditional, with Q+(e) not Haar null).

Key lemma 2. One can find δ > 0 and C < ∞ such that the
following holds: for every finite set I ⊆ N, there exists J ⊆ I such
that

|J| ≥ δ |I | and

∥∥∥∥∑
i∈J

ei

∥∥∥∥ ≤ C .

Define

J :=
{

J ⊆ N finite;
∥∥∑

i∈J ei
∥∥ ≤ C

}
.

Key lemma 2 + Ptak’s Lemma =⇒ there exists an infinite set
I ⊆ N such that every finite subset of I belongs to J .

Unconditionality =⇒ upper estimate for (ei )i∈I (as before).



Proof of Key lemma 2

Fact. Assuming that Q+(e) is not Haar null, one can find δ > 0 and
R <∞ such that the following holds: for every probability measure
µ supported on B(0, 1), there exists x ∈ X such that ‖x‖ ≤ R and
µ
(
x + Q+(e)

)
≥ δ.

Now, I ⊆ N finite. Apply the Fact with

µ := 1
|I |
∑
i∈I
δ−ei .

This gives x =
∑∞

1 xiei with ‖x‖ ≤ R such that

|J| ≥ δ |I | where J = {i ∈ I ; xi ≤ −1}.

Then
∥∥∑

i∈J ei
∥∥≤ K ‖x‖≤ KR := C by unconditionality.



c0-saturation of quotients

Theorem 3. Let X be a Banach space, and assume that X has an
unconditional basis whose positive cone is not Haar null. Then any
quotient E of X is c0-saturated: every infinite-dimensional subspace
of E has a further subspace isomorphic to c0.

Remark 1. Again, not enough to prove the conjecture. Example:
the Schreier space S has c0-saturated quotients (Odell 1992).

Remark 2. Little to do with Haar null sets. Say that a Banach
space X has Property (P) if every weakly null normalized sequence
in X has a subsequence equivalent to the canonical basis basis of
c0. Key lemma 3: if X has (P) and admits an unconditional basis
e with no `1 block sequence, then every quotient of X has (P).


