When is a positive cone Haar null?

(joint with J. Esterle and P. Moreau)

All Banach spaces are real and infinite-dimensional.

Haar null sets

Thanks to Frédéric, you all know the definition: a Borel set A in a separable Banach space X is Haar null if there exists a Borel probability measure μ on X such that

$$\mu(A+x)=0$$
 for all $x\in X$.

Starting point

Matouskova–Stegall: Haar null sets characterize reflexivity. Precisely: A separable Banach space X is reflexive if and only if every closed convex set $C \subseteq X$ with empty interior is Haar null.

Vague question. What about "special" closed convex sets with empty interior in nonreflexive spaces?

Positive cones

 $\mathbf{e} = (e_i)_{i \geq 1}$ basic sequence in X

$$Q^+(\mathbf{e}) := \left\{ \sum_{i=1}^{\infty} x_i \ e_i; \ x_i \ge 0 \right\}$$

(Closed convex set with empty interior in $[\mathbf{e}] := \overline{\operatorname{span}} \{e_i; i \geq 1\}.$)

Precise question. When is $Q^+(e)$ Haar null in [e]?

Remark. $Q^+(\mathbf{e})$ is never *Gauss null*.

Two simple examples

Example 1. The positive cone of ℓ_1 is Haar null.

Proof. Let $(\xi_i)_{i\geq 1}$ be a sequence of independent (real) random variables with $\mathbb{P}(\xi_i=0)=1-\frac{1}{i}$ and $\mathbb{P}(\xi_i=-\frac{1}{i})=\frac{1}{i}$. Then $\|\xi_i\|_{L_1}=\frac{1}{i^2}$, so that $\xi:=(\xi_1,\xi_2,\dots)\in\ell_1$ almost surely. Let μ be the distribution of the random variable ξ (measure on ℓ_1). If $x=(x_i)\in\ell_1$ and $x\leq 0$, then

$$\mu(Q^+ + x) = \mathbb{P}(\xi \ge x) = \prod_{i \in \mathbb{N}} \mathbb{P}(\xi_i \ge x_i) = \prod_{\{i; x_i > -1/i\}} \left(1 - \frac{1}{i}\right) = 0.$$

Example 2. The positive cone of c_0 contains a translate of every compact set, so it is not Haar null.

Proof. If $K \subseteq c_0$ is compact, then it is "uniformly c_0 ":

$$\alpha_i := \sup_{x=(x_i)\in K} \sup_{j\geq i} |x_j| \xrightarrow{i\to\infty} 0.$$

So
$$\alpha := (\alpha_i) \in c_0$$
, and $K + \alpha \subseteq Q^+$.

A tempting "conjecture"

Assume that \mathbf{e} is a normalized and *unconditional* basic sequence. Then $Q^+(\mathbf{e})$ is not Haar null if and only if \mathbf{e} is equivalent to the canonical basis of c_0 .

A remark to keep in mind

$$\mathbf{e} = (e_i)$$
 basic sequence

ullet To show that ${f e}\sim c_0$ means to get estimates of the form

$$c \|a\|_{\infty} \leq \left\|\sum_{i} a_{i} e_{i}\right\| \leq C \|a\|_{\infty} \quad \text{for } a = (a_{i}) \in c_{00}.$$

• If **e** is normalized, the *lower* estimate is *for free*. So one just need to check the upper estimate

$$\left\|\sum_{i} a_{i} e_{i}\right\| \leq C \|a\|_{\infty}.$$

A weaker version of the conjecture

Say that a set $Q \subseteq X$ is a "compact-catcher" if it contains a translate of every compact set.

Theorem 1. The conjecture holds true if "not Haar null" is replaced with "compact-catcher": if \mathbf{e} is a normalized unconditional basic sequence such that $Q^+(\mathbf{e})$ is a compact-catcher, then $\mathbf{e} \sim c_0$.

Remark. False without the unconditionality assumption. Example: the canonical basis of the *James' space* has a compact-catcher positive cone.

Proof of Theorem 1 (sketch)

Key lemma 1. Assume that $\mathbf{e} = (e_i)$ is normalized. Then, $Q^+(\mathbf{e})$ is a compact-catcher if and only if one can find a sequence (λ_i) with $\lambda_i \geq 1$ such that

$$\sup_{n>1} \left\| \sum_{i=1}^n \lambda_i e_i \right\| < \infty.$$

Key lemma $1 + unconditionality \implies upper estimate:$

$$\left\| \sum_{i} a_{i} e_{i} \right\| = \left\| \sum_{i} \frac{a_{i}}{\lambda_{i}} \lambda_{i} e_{i} \right\| \leq K \|a\|_{\infty} \left\| \sum_{i} \lambda_{i} e_{i} \right\| \leq C \|a\|_{\infty}.$$

Proof of Key lemma 1 (only if part)

Fact. If $Q^+(\mathbf{e})$ is a compact-catcher, one can find $M < \infty$ such that the following holds: for any finite set $F \subseteq \overline{B}(0,1)$, there exists $z \in X$ such that $||z|| \leq M$ and $z + F \subseteq Q^+(\mathbf{e})$.

Now, define

$$F_k := \{-e_i; \ 1 \le i \le k\} \qquad (k \ge 1).$$

Fact \implies there exists $z_k = \sum_i z_{i,k} e_i$ such that $||z_k|| \leq M$ and $z_k + F_k \subseteq Q^+(\mathbf{e})$.

- ▶ $||z_k|| \le M \implies$ the $z_{i,k}$ are bounded (e normalized);
- ▶ $z_{i,k} \ge 1$ if $k \ge i$.

WLOG $z_{i,k} \xrightarrow{k \to \infty} \lambda_i \ge 1$ for all $i \in \mathbb{N}$; and then

$$\left\| \sum_{i=1}^n \lambda_i e_i \right\| = \lim_{k \to \infty} \left\| \sum_{i=1}^n z_{i,k} e_i \right\| \le KM \quad \text{for all } n \in \mathbb{N}.$$

Block sequences

Block sequence of $\mathbf{e} = (e_i)$: sequence $\mathbf{f} = (f_j)_{j \geq 1}$ ¿of the form

$$f_j = \sum_{i=p_{j-1}}^{p_j-1} a_i e_i$$
 $(1 \le p_0 < p_1 < \dots)$

Block sequence lemma. Assume that e is unconditional. If e has a block sequence f such that $Q^+(f)$ is Haar null in [f], then $Q^+(e)$ is Haar null in [e].

Consequence. If $Q^+(\mathbf{e})$ is not Haar null, then every block sequence of \mathbf{e} has a further block sequence equivalent to the canonical basis of c_0 . (Follows from Matouskova–Stegall + James' characterization of reflexivity.)

*c*₀-saturation of block sequences

e unconditional

Theorem 2. If $Q^+(\mathbf{e})$ is not Haar null, then every normalized block-sequence of \mathbf{e} has a subsequence equivalent to the canonical basis of c_0 (with uniform bounds on the implied constants).

Remark. Something stronger holds true. But still not enough to ensure that $\mathbf{e} \sim c_0$.

Proof of Theorem 2 (sketch)

Enough: to show that \mathbf{e} itself has a c_0 subsequence (assuming \mathbf{e} is normalized and unconditional, with $Q^+(\mathbf{e})$ not Haar null).

Key lemma 2. One can find $\delta > 0$ and $C < \infty$ such that the following holds: for every finite set $I \subseteq \mathbb{N}$, there exists $J \subseteq I$ such that

$$|J| \ge \delta |I|$$
 and $\left\| \sum_{i \in J} e_i \right\| \le C$.

Define

$$\mathcal{J} := \left\{ J \subseteq \mathbb{N} \text{ finite; } \left\| \sum_{i \in J} e_i \right\| \le C \right\}.$$

Key lemma $2 + \mathsf{Ptak's} \ \mathsf{Lemma} \implies \mathsf{there} \ \mathsf{exists} \ \mathsf{an} \ \mathsf{infinite} \ \mathsf{set} \ \mathbb{I} \subseteq \mathbb{N} \ \mathsf{such} \ \mathsf{that} \ \mathsf{every} \ \mathsf{finite} \ \mathsf{subset} \ \mathsf{of} \ \mathbb{I} \ \mathsf{belongs} \ \mathsf{to} \ \mathcal{J}.$

Unconditionality \implies upper estimate for $(e_i)_{i\in\mathbb{I}}$ (as before).

Proof of Key lemma 2

Fact. Assuming that $Q^+(\mathbf{e})$ is not Haar null, one can find $\delta > 0$ and $R < \infty$ such that the following holds: for every probability measure μ supported on $\overline{B}(0,1)$, there exists $x \in X$ such that $\|x\| \leq R$ and $\mu(x+Q^+(\mathbf{e})) \geq \delta$.

Now, $I \subseteq \mathbb{N}$ finite. Apply the Fact with

$$\mu := \frac{1}{|I|} \sum_{i \in I} \delta_{-\mathbf{e}_i}.$$

This gives $x = \sum_{1}^{\infty} x_i e_i$ with $||x|| \leq R$ such that

$$|J| \ge \delta |I|$$
 where $J = \{i \in I; x_i \le -1\}.$

Then $\|\sum_{i \in I} e_i\| \le K \|x\| \le KR := C$ by unconditionality.

*c*₀-saturation of quotients

Theorem 3. Let X be a Banach space, and assume that X has an unconditional basis whose positive cone is not Haar null. Then any quotient E of X is c_0 -saturated: every infinite-dimensional subspace of E has a further subspace isomorphic to c_0 .

Remark 1. Again, not enough to prove the conjecture. Example: the *Schreier space* S has c_0 -saturated quotients (Odell 1992).

Remark 2. Little to do with Haar null sets. Say that a Banach space X has Property (P) if every weakly null normalized sequence in X has a subsequence equivalent to the canonical basis basis of c_0 . Key lemma 3: if X has (P) and admits an unconditional basis e with no ℓ_1 block sequence, then every quotient of X has (P).