Lineability: The search for linearity in Mathematics

JUAN B. SEOANE SEPÚLVEDA Universidad Complutense de Madrid and ICMAT, Spain

GENERICITY & SMALL SETS IN ANALYSIS Esneux, Belgium, May 2015

STÉPHANE JAFFARD'S BIRTHDAY PARTY!

1992

2015

HAPPY BIRTHDAY, STÉPHANE!

Lineability ...? Motivation!

In 1872, Weierstrass constructed a continuous nowhere differentiable function on \mathbb{R} . A function such as

$$f(x) = \sum_{n=0}^{\infty} \frac{\cos(3^n x)}{2^n}$$

enjoys this property.

In the literature, this example is known as

Weierstrass' monster,

although earlier (1822) Bolzano found a function of this type!!!!

How many examples are like Weierstrass'?

MANY functions enjoying this "pathological" property have been constructed since the 1800's. Moreover:

- **1966**: Gurariy showed that there exists an infinite dimensional linear space every nonzero function of which is continuous and nowhere differentiable on \mathbb{R} .
- **1999**: Fonf, Gurariy, and Kadeč proved that the above space can be chosen to be **closed** in C[0, 1].
- Analogously, Rodríguez-Piazza (1995), Hencl (2000), Bayart and Quarta (2007), among others, have improved these spaces by adding *extra pathologies* to Weierstrass' monster.

Lineability and Spaceability. The basics

Definitions

Gurariy's results from 1966 and 1999 lead to the introduction of the following concept:

Definition (Gurariy)

- A subset *M* of functions on \mathbb{R} is said to be **spaceable** if $M \cup \{0\}$ contains a *closed* infinite dimensional subspace.
- The set *M* will be called **lineable** if *M* ∪ {0} contains an infinite dimensional vector space.
- *M* is called κ -lineable if it contains a vector space of dimension κ .

Lineability

Lineability, what's that?

Lineability and Spaceability. The basics

Thus,

Theorem (Gurariy, 1966)

The set of continuous nowhere differentiable functions in \mathbb{R} is LINEABLE.

Theorem (Fonf, Gurariy, Kadeč, 1999)

The set of continuous nowhere differentiable functions on $\mathcal{C}[0,1]$ is spaceable.

Lineability and Spaceability. The basics

And, also, in 1966 V. I. Gurariy showed something really surprising:

Doklady 1966 Tom 167, No. 5

SUBSPACES AND BASES IN SPACES OF CONTINUOUS FUNCTIONS

V. I. GURARIĬ

Theorem 10. If all elements of a subspace E of C are differentiable on [0, 1], then E is finite-dimensional.*

Lineability and Spaceability. The basics

The term lineability was coined by **Vladimir I. Gurariy** and first introduced by Aron, Gurariy, S. in

Proc. Amer. Math. Soc. 133 (2004) 795-803.

Around that time and since then, many authors have shown their interest in this topic...

Lineability

Lineability, what's that?

Lineability and Spaceability. The basics

Other examples...

Theorem (Aron, Gurariy, Seoane, 2004)

The set of differentiable nowhere monotone functions on \mathbb{R} is \aleph_0 -lineable.

Theorem (Gámez, Muñoz, Sánchez, Seoane, 2010)

The set of differentiable nowhere monotone functions on \mathbb{R} is c-lineable.

Set of zeroes of polynomials in Banach spaces

- Aron, Rueda (1997).
- Plichko, Zagorodnyuk (1998).
- Aron, Gonzalo, Zagorodnyuk (2000).
- Aron, García, Maestre (2001).
- Aron, Boyd, Ryan, Zalduendo (2003).
- Aron, Hajék (2006).

Chaos and hypercyclicity

- Godefroy, Shapiro (1991).
- Montes (1996).
- Aron, García, Maestre (2001).
- Aron, Bès, León, Peris (2005).
- Seoane (2007).
- Aron, Conejero, Peris, Seoane (2007).
- Bernal (2009).
- Shkarin (2010).
- Bertoloto, Botelho, Fávaro, Jatobá (2012).

Continuous nowhere differentiable functions in $\mathcal{C}[0,1]$

- Rodríguez-Piazza (1995).
- Fonf, Gurariy, Kadeč (1999).
- Aron, García, Maestre (2001).
- Bayart, Quarta (2007).
- Bernal (2008).
- Aron, García, Pérez, Seoane (2009).

Different directions in this topic...

Norm-attaining functionals

- Aron, García, Maestre (2001).
- Acosta, Aizpuru, Aron, García (2007).
- Pellegrino, Teixeira (2009).

Subsets of $\mathbb{R}^{\mathbb{R}}$

- Aron, Gurariy, Seoane (2004).
- Enflo, Gurariy (2004).
- Gurariy, Quarta (2004).
- Bayart, Quarta (2007).
- Aron, Seoane (2007).
- Aron, Gorkin (2007).
- García, Palmberg, Seoane (2007).
- Aizpuru, Pérez, García, Seoane (2008).
- Azagra, Muñoz, Sánchez, Seoane (2009).
- Aron, García, Pérez, Seoane (2009).
- Gámez, Muñoz, Seoane (2010, 2011).
- Bartoszewicz, Głąb, Pellegrino, Seoane-Sepúlveda (2012).
- Jimenez-Rodríguez, Muñoz, Seoane (2012).
- Conejero, Jimenez-Rodríguez, Muñoz, Seoane (2012).
- Enflo, Gurariy, Seoane (2014).

ℓ_p and L_p spaces

- Aizpuru, Pérez, Seoane (2005).
- Aron, Pérez, Seoane (2006).
- Muñoz, Palmberg, Puglisi, Seoane (2008).
- Botelho, Diniz, Fávaro, Pellegrino (2011).
- Bernal, Ordóñez-Cabrera (2012).
- Botelho, Fávaro, Pellegrino, Seoane (2012).
- Botelho, Cariello, Fávaro, Pellegrino, Seoane (2012).
- Akbarbaglu, Maghsoudi (2012).
- Jimenez-Rodríguez, Maghsoudi, Muñoz (2013).
- Cariello, Seoane (2013).

Different directions in this topic...

Theory of homogeneous polynomials

• Botelho, Matos, Pellegrino (2009).

Complex analysis and holomorphy

- Bernal (2008).
- López (2010).
- Bastin, Conejero, Esser, Seoane (2013).

Measurable and non-measurable functions

- García, Seoane (2006).
- Muñoz, Palmberg, Puglisi, Seoane (2008).

Non-absolutely summing operators

- Puglisi, Seoane (2008).
- Botelho, Diniz, Pellegrino (2009).
- Kitson, Timoney (2010).

An overview of some results on lineability

Integrability and Measurability

Theorem (García, Martín, Seoane, 2009)

On any interval I, the set of Lebesgue integrable functions that are not Riemann integrable is **spaceable**.

Theorem (García, Martín, Seoane, 2009)

Given any unbounded interval I, the set of Riemann integrable functions on I that are not Lebesgue integrable is **lineable**.

Theorem (Bernal, Ordóñez-Cabrera, 2013)

Given any unbounded interval I, the set of Riemann integrable functions on I that are not Lebesgue integrable is **spaceable**.

An overview of some results on lineability

Let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , and denote by $N(\Omega, \mathbb{K})$ the set of non-measurable functions from Ω to \mathbb{K} , provided a measurable space (Ω, Σ) .

Theorem (García, Seoane, 2006)

For any cardinal γ there is a Hausdorff topological space Ω with Borel σ -algebra \mathcal{B} such that $N(\Omega, \mathbb{K}) \cup \{0\}$ contains a subspace isometric to $\ell_{\infty}(\gamma)$, i.e. $N(\Omega, \mathbb{K})$ is spaceable.

In particular, any Banach space with density character γ is isometric to a space consisting (but zero) of non-measurable functions.

An overview of some results on lineability

The Denjoy-Clarkson property

It is well known that derivatives of functions of one real variable satisfy the Denjoy-Clarkson property:

If $u : \mathbb{R} \to \mathbb{R}$ is everywhere differentiable, then the counterimage through u' of any open subset of \mathbb{R} is either empty or has positive Lebesgue measure.

Extending this result to several real variables is known as the *"Weil Gradient Problem"* and, after being an open problem for almost 40 years, was eventually solved in the negative for \mathbb{R}^2 by Buczolich in 2002.

Theorem (García, Grecu, Maestre, Seoane, 2010)

For every $n \ge 2$ there exists an infinite dimensional Banach space of differentiable functions on \mathbb{R}^n which (except for 0) fail the Denjoy-Clarkson property.

An overview of some results on lineability

Sierpiński-Zygmund functions

Theorem (Blumberg, 1922)

Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrary function. There exists a dense subset $S \subset \mathbb{R}$ such that the function $f|_S$ is continuous.

A careful reading of the proof of this result shows that the above set S is countable. Naturally, we could wonder whether we can choose the subset S in Blumberg's theorem to be **uncountable**. A (partial) negative answer to this was given by Sierpiński and Zygmund:

Theorem (Sierpiński, Zygmund, 1923)

There exists a function $f : \mathbb{R} \to \mathbb{R}$ such that, for any set $Z \subset \mathbb{R}$ of cardinality the continuum, the restriction $f|_Z$ is not a Borel map.

An overview of some results on lineability

$\mathcal{SZ}(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} : f \text{ is a Sierpiński-Zygmund function} \}$

Theorem (Gámez, Muñoz, Sánchez, Seoane, 2010)

 $\mathcal{SZ}(\mathbb{R})$ is κ -lineable for some cardinal κ with $\mathfrak{c} < \kappa \leq 2^{\mathfrak{c}}$. Assuming the Generalized Continuum Hypothesis, $\mathcal{SZ}(\mathbb{R})$ is $2^{\mathfrak{c}}$ -lineable.

Lineability

Lineability, what's that?

An overview of some results on lineability

Question

Can the 2^{*c*}-lineability of $SZ(\mathbb{R})$ be obtained in ZFC?

Theorem (Gámez, Seoane, 2013)

The 2^c-lineability of $SZ(\mathbb{R})$ in undecidable.

Is "everything" lineable?

1-lineable and not 2-lineable sets, I

Example 1: Gurariy and Quarta (2005)

Let $\widehat{C}[0,1]$ be the subset of C[0,1] of functions admitting one (and only one) absolute maximum. If $V \subset \widehat{C}[0,1] \cup \{0\}$ is a non-trivial linear space, then V is 1-dimensional.

Recently, Botelho, Cariello, Fávaro, Pellegrino, and Seoane have obtained generalizations of the above result in a more general framework and for *bigger* dimensions.

Is "everything" lineable?

1-lineable and not 2-lineable sets, II

Example 2: Albuquerque (2013)

Let us suppose that there exists a 2-dimensional vector space of injective functions, V, generated by f and g. Take $x \neq y$ and

$$\alpha = \frac{f(x) - f(y)}{g(y) - g(x)} \in \mathbb{R}.$$

Consider the function $h = f + \alpha g \in V \setminus \{0\}$. By construction we have h(x) = h(y).

EXAMPLE: non-lineable, *n*-lineable set $(\forall n \in \mathbb{N})$

Let $j_1 \leq k_1 < j_2 \leq \cdots \leq k_m < j_{m+1} \leq \cdots$ integers. The set

$$M = igcup_m \left\{ \sum_{i=j_m}^{k_m} a_i x^i \; : \; a_i \in \mathbb{R}
ight\}$$

is *n*-lineable for every $n \in \mathbb{N}$ and it is not lineable in $\mathcal{C}[0, 1]$.

EXAMPLE: Totally non-linear sets

There are totally non-linear sets (but they might contain a positive cone).

EXAMPLE

Let X be an infinite dimensional Banach space. There exists a subset $M \subset X$ such that M is **spaceable and dense**, although it is **not dense-lineable**.

EXAMPLE

Every infinite dimensional Banach space X contains a subset M which is **lineable and dense**, but which is **not spaceable**. If X is separable, then M can also be chosen to be dense-lineable.

Lineability, Spaceability, ... What about other structures?

We have, so far, studied the existence of linear subspaces inside sets of functions enjoying some "*exotic*" property.

But, can we also construct algebras inside those sets of functions?

Aron, Pérez, and S. introduced the concept of **Algebrability** (originally coined by V. I. Gurariy) in

Studia Math. 175 (2006), 83–90, and Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 25–31.

Definition (Gurariy + Aron, Pérez, and Seoane, 2006)

- We say that a subset of functions M is (μ, s)-algebrable if M ∪ {0} contains an algebra A such that dim(A) = μ (as a vector space) and card(S) = s, where μ and s are two cardinal numbers and S is a minimal system of generators of A.
- For short, M is said to be **algebrable** if $M \cup \{0\}$ contains an infinitely generated algebra.

$\textbf{ALGEBRABLE} \Rightarrow \textbf{LINEABLE}$

Theorem (Aron, Pérez, Seoane, 2006)

Let $E \subset \mathbb{T}$ be a set of measure zero. Let $\mathcal{F}_E \subset \mathcal{C}(\mathbb{T})$ be the set of continuous functions whose Fourier series expansion diverges at every point $t \in E$. Then \mathcal{F}_E is (dense-)algebrable.

Theorem (Aron, Conejero, Peris, Seoane, 2010)

There exists an **uncountably generated** algebra every non-zero element of which is an everywhere surjective function on \mathbb{C} , that is, a function $f: \mathbb{C} \to \mathbb{C}$ such that, for every non void open set $U \subset \mathbb{C}$, $f(U) = \mathbb{C}$. Algebras and more!

Theorem (Gámez, Muñoz, Sánchez, Seoane, 2010)

 $\mathcal{SZ}(\mathbb{R})$ is $(\mathfrak{c},\mathfrak{c})$ -algebrable.

Theorem (Rosenthal, 1968)

 $\ell_{\infty} \setminus c_0$ is spaceable.

Theorem (García, Martín, Seoane, 2009)

 $\ell_{\infty} \setminus c_0$ is algebrable.

Theorem (García, Martín, Seoane, 2009)

 $\ell_{\infty}(\Gamma) \setminus c_0(\Gamma)$ is spaceable and algebrable for every infinite set Γ .

How "strange" can a function be?

A function from $ES(\mathbb{R})$ (I)

- Let (I_n)_{n∈ℕ} be the collection of all open intervals with rational endpoints.
- ▶ I_1 contains a Cantor type set, call it C_1 .
- ▶ $I_2 \setminus C_1$ also contains a Cantor type set, call it C_2 .
- ▶ $I_3 \setminus (C_1 \cup C_2)$ contains, as well, a Cantor type set, C_3 .
- Inductively... there exists a family of pairwise disjoint Cantor type sets, (C_n)_{n∈ℕ}, such that for every n ∈ ℕ,

$$I_n \setminus \left(\bigcup_{k=1}^{n-1} C_k \right) \supset C_n.$$

Algebras and more!

A function from $ES(\mathbb{R})$ (II)

▶ Next, take (for every $n \in \mathbb{N}$) ϕ_n any bijection

$$\phi_n: C_n \leftrightarrow \mathbb{R}.$$

► Define
$$f \in \mathbb{R}^{\mathbb{R}}$$
 as $f(x) = \begin{cases} \phi_n(x) & \text{if } x \in C_n, \\ 0 & \text{otherwise.} \end{cases}$

- f is clearly everywhere surjective (and also zero almost everywhere!).
- ▶ Indeed, let *I* be any interval in \mathbb{R} . There exists $k \in \mathbb{N}$ such that $I_k \subset I$, thus

$$f(I) \supset f(I_k) \supset f(C_k) = \phi_k(C_k) = \mathbb{R}.$$

An even more "pathological' function

- ✓ F. B. Jones (1942) proved the existence of a function such that its graph intersects every closed subset of ℝ² with uncountable projection on the x-axis.
- $\checkmark\,$ A Jones function has dense graph in $\mathbb{R}^2.$
- ✓ If *f* is a Jones function, then $f(I) = \mathbb{R}$ for every interval *I*,
- $\checkmark\,$ also, f attains every real value "c times", and
- ✓ moreover, $f(P) = \mathbb{R}$ for every perfect set $P \subset \mathbb{R}$.
- ✓ Jones functions are **not** measurable.

Algebras and more!

An even more "pathological" function

- ✓ J. L. Gámez (2011) proved that the set of *Jones functions* is actually 2^c-lineable.
- ✓ Ciesielski, Gámez, Pellegrino, Seoane (2014) proved that the set of *Jones functions* is actually 2^c-spaceable with respect to the topology of pointwise convergence.

✓ Algebrability?

Annulling functions in C[0, 1] and spaceability

Annulling functions in $\mathcal{C}[0,1]$

Definition

A function $f \in C[0, 1]$ is said to be an annulling function if f has infinitely many zeros in [0, 1].

It is easy to construct a $\mathfrak{c}-generated$ algebra of annulling functions in $\mathcal{C}[0,1].$ But...

Is the set of annulling functions spaceable in C[0, 1]?
Annulling functions in C[0, 1] and spaceability

Annulling functions and spaceability

Answer:

Theorem (Enflo, Gurariy, Seoane, 2012)

Let X be any infinite dimensional closed subspace of C[0, 1]. There exists:

- An infinite dimensional closed subspace Y of X, and
- a sequence $\{t_k\}_{k\in\mathbb{N}} \subset [0,1]$ (of pairwise different elements),

such that $y(t_k) = 0$ for every $k \in \mathbb{N}$ and every $y \in Y$.

Related to the study of the amount of zeros of functions on a given interval, let us recall a question posed by Aron and Gurariy in 2003:

Is there an infinite dimensional subspace of ℓ_{∞} every non-zero element of which has a finite number of zero coordinates?

Theorem (Cariello, Seoane, 2013)

Let X be c_0 or ℓ_p for $p \in [1, \infty]$. And denote by Z(X) the subset of X formed by sequences having only a finite number of zero coordinates.

- Z(X) does not contain infinite dimensional closed subspaces.
- Z(X) is maximal algebrable and maximal lineable.

$Z(c_0)$ and $Z(\ell_p)$ are max. algebrable for $p\in [1,+\infty]$

For every real number $p \in]0,1[$ denote

$$x_p = \left(p^1, p^2, p^3, \ldots\right),$$

and let $V = \text{span}\{x_p : p \in]0, 1[\}$. Notice that $V \subset X$, for $X = c_0$ or ℓ_p , $p \in [1, +\infty]$.

Next, take any $x \in V \setminus \{0\}$. We shall show that $x \in Z(X)$. We can write x as

$$x=\sum_{j=1}^n\lambda_j x_{p_j},$$

with $N \in \mathbb{N}$, $p_j \in]0,1[$ for every $j \in \{1, 2, \ldots, N\}$, $p_N > p_{N-1} > \ldots > p_1$, and $(\lambda_j)_{j=1}^N \subset \mathbb{C}$.

Let us suppose that there exists an increasing sequence of positive integers $(m_k)_{k \in \mathbb{N}}$ such that $x(m_k) = 0$ for every $k \in \mathbb{N}$. Then, we have

$$D = \sum_{j=1}^{N} \lambda_j p_j^{m_j}$$

for every $k \in \mathbb{N}$. Dividing the last identity by $p_N^{m_k}$, we obtain (for every $k \in \mathbb{N}$),

$$0 = \sum_{j=1}^{N-1} \lambda_j \left(\frac{p_j}{p_N}\right)^{m_k} + \lambda_N.$$

Now, since
$$0 < \frac{p_j}{p_N} < 1$$
 for every $j \in \{1, 2, ..., N-1\}$ and $\lim_{k \to \infty} m_k = \infty$, we have $\lim_{k \to \infty} \left(\frac{p_j}{p_N}\right)^{m_k} = 0$. Thus, $\lambda_N = 0$. By induction, we can easily obtain $\lambda_j = 0$ for every $j \in \{1, 2, ..., N\}$. This is a contradiction, since $x \neq 0$.

This argument also shows that the set

$$\{x_p : p \in]0, 1]\}$$

is linearly independent, thus V is c-dimensional (where c stands for the continuum) and, thus, Z(X) is maximal lineable for $X = c_0$ or ℓ_p , $p \in [1, +\infty]$.

Now let

$$x_p, x_q \in \{x_r, r \in]0, 1[\}.$$

Notice that the coordinatewise product of x_p and x_q is

$$x_{pq} \in \{x_r, r \in]0, 1[\}$$

Therefore the algebra generated by $\{x_r, r \in]0, 1[\}$ is the subspace generated by $\{x_r, r \in]0, 1[\}$ which is V.

Consider any countable subset $W \subset V$. The subalgebra generated by W is a vector space generated by finite products of elements of W, but the set of finite products of elements belonging to a countable set is still countable. Therefore the subalgebra generated by W has countable dimension and, thus, W cannot be a set of generators for the algebra V, since dim(V) is uncountable. Therefore any set of generators of V is uncountable.

For any topological space X, let

 $\mathcal{CS}_{\infty}(\mathbb{R}^m,X) := \left\{ f \in \mathcal{C}\left(\mathbb{R}^m,X\right) : f^{-1}(\{a\}) \text{ is unbounded for every } a \in X \right\}.$

In 2014 Albuquerque showed the following:

Theorem (Albuquerque, 2014)

For every pair $m, n \in \mathbb{N}$, the set $CS(\mathbb{R}^m, \mathbb{R}^n)$ is maximal lineable in the space $C(\mathbb{R}^m, \mathbb{R}^n)$.

Also, more recently, Bernal and Ordóñez provided the following natural generalization of Albuquerque's result.

Theorem (Bernal and Ordóñez, 2014)

For each pair $m, n \in \mathbb{N}$, the set $\mathcal{CS}_{\infty}(\mathbb{R}^m, \mathbb{R}^n)$ is maximal dense-lineable and spaceable in $\mathcal{C}(\mathbb{R}^m, \mathbb{R}^n)$. In particular, it is maximal lineable in $\mathcal{C}(\mathbb{R}^m, \mathbb{R}^n)$.

Lineability		
Peano maps		

A natural question would be to ask about the algebrability of the set $\mathcal{CS}_{\infty}(\mathbb{R}^m,\mathbb{R}^n).$

Clearly, **algebrability** cannot be obtained in the real context, since for any $f \in \mathbb{R}^{\mathbb{R}}$, f^2 is always non-negative.

However, in the complex frame it is actually possible to obtain algebrability. Before that, let us recall some results related to **the growth** of an entire function.

Growth of an entire function

 $\mathcal{H}(\mathbb{C})$ denotes the space of all entire functions from \mathbb{C} to \mathbb{C} . For r > 0and $f \in \mathcal{H}(\mathbb{C})$, we set $M(f, r) := \max_{|z|=r} |f(z)|$. $M(f, \cdot)$ increases strictly towards $+\infty$ as long as f is non-constant.

The (growth) order $\rho(f)$ of an entire function $f \in \mathcal{H}(\mathbb{C})$ is defined as the infimum of all positive real numbers α with the following property: $M(f,r) < e^{r^{\alpha}}$ for all $r > r(\alpha) > 0$. Note that $\rho(f) \in [0, +\infty]$. The order of a constant map is 0. If f is non-constant, we have

$$p(f) = \limsup_{r \to +\infty} \frac{\log \log M(f, r)}{\log r}$$

Some properties and examples, I

(a) If $f(z) = \sum_{n=1}^{\infty} a_n z^n$ is the MacLaurin series expansion of f then

$$\rho(f) = \limsup_{n \to +\infty} \frac{n \log n}{\log (1/|a_n|)}.$$

In particular, given $\alpha > 0$, $f_{\alpha}(z) := \sum_{n=1}^{\infty} \frac{z^n}{n^{n/\alpha}}$ satisfies $\rho(f_{\alpha}) = \alpha$.

(b) For every $f \in \mathcal{H}(\mathbb{C})$, every $N \in \mathbb{N}$ and every $\alpha \in \mathbb{C} \setminus \{0\}$,

$$\rho\left(\alpha f^{N}\right)=\rho\left(f\right).$$

Some properties and examples, II

(c) For every $f,g\in\mathcal{H}\left(\mathbb{C}
ight)$,

$$\rho(f \cdot g) \leq \max\{\rho(f), \rho(g)\}$$

and

$$\rho(f+g) \leq \max\{\rho(f), \rho(g)\}.$$

Moreover, if f and g have different orders, then

$$ho(f+g) = \max\{
ho(f),
ho(g)\} =
ho(f \cdot g),$$

where it is assumed $f \not\equiv 0 \not\equiv g$ for the second equality.

(d) (Corollary to Hadamard's theorem): Every non-constant entire function f with $\infty > \rho(f) \notin \mathbb{N}$ is surjective.

An "interesting" consequence

Given any non-constant polynomial in M complex variables $P \in \mathbb{C}[z_1, \ldots, z_M]$, let $\mathcal{I}_P \subset \{1, \ldots, M\}$ be the set of indexes k such that the variable z_k explicitly appears in some monomial (with non-zero coefficient) of P; that is,

$$\mathcal{I}_P = \left\{ n \in \{1, \ldots, M\} : \frac{\partial P}{\partial z_n} \not\equiv 0 \right\}.$$

Proposition

Let $f_1, \ldots, f_M \in \mathcal{H}(\mathbb{C})$ such that $\rho(f_i) \neq \rho(f_j)$ whenever $i \neq j$. Then

$$\rho\left(P\left(f_{1},\ldots,f_{M}\right)\right)=\max_{k\in\mathcal{I}_{P}}\rho\left(f_{k}\right),$$

Moreover, the set $(f_k)_{k=1}^M$ is algebraically independent.

The result (maximal algebrability)

Theorem (Albuquerque, Bernal, Pellegrino, Seoane, 2014)

The set $\mathcal{CS}_{\infty}(\mathbb{R}^m, \mathbb{C}^n)$ is maximal algebrable in $\mathcal{C}(\mathbb{R}^m, \mathbb{C}^n)$.

PROOF - 1/2

It suffices to consider the case n = m = 1. In fact, the case m > 1 follows from the m = 1 by considering the projection map from \mathbb{R}^m to \mathbb{R} . The case n > 1 is obtained from n = 1 by working on each coordinate.

For each s > 0, select an entire function $\varphi_s : \mathbb{C} \to \mathbb{C}$ of order s > 0.Let $A := (0, +\infty) \setminus \mathbb{N}$. The Proposition assures that the set $\{\varphi_s\}_{s \in A}$ is a system of cardinality \mathfrak{c} generating an algebra \mathcal{A} .

Next, notice that any element $\varphi \in \mathcal{A} \setminus \{0\}$ may be written as a non-constant polynomial P without constant term evaluated on some φ_{s_1} , φ_{s_2} , ..., φ_{s_N} :

$$\varphi = P(\varphi_{s_1}, \varphi_{s_2}, \dots, \varphi_{s_N}) = \sum_{|\alpha| \le m} c_{\alpha} \cdot \varphi_{s_1}^{\alpha_1} \cdot \varphi_{s_2}^{\alpha_2} \cdots \varphi_{s_N}^{\alpha_N}.$$

PROOF - 2/2

By the Proposition, there exists $j \in \{1, \dots, N\}$ such that

$$\rho(\varphi) = \rho(\varphi_{s_j}) = s_j \notin \mathbb{N}_0.$$

Thus, φ is surjective (Why?). Finally, take any $F \in CS_{\infty}(\mathbb{R}, \mathbb{C})$ and consider the algebra

$$\mathcal{B} := \{\varphi \circ F\}_{\varphi \in \mathcal{A}}.$$

Then it is plain that ${\mathcal B}\,$ is ${\mathfrak c}\text{-generated}$ and that

$$\mathcal{B}\setminus\{0\}\subset\mathcal{CS}_{\infty}\left(\mathbb{R},\mathbb{C}
ight),$$

as required.

Peano and σ -Peano spaces

A theorem of Hahn and Mazurkiewicz provides a topological characterization of Hausdorff topological spaces that are continuous image of the unit interval I := [0, 1]: these are precisely the Peano spaces. We are interested in investigating the topological spaces that are continuous image of the *real line*, and for this task the following definition seems natural.

Definition

A topological space X is a σ -Peano space if there exists an increasing sequence of subsets

$$K_1 \subset K_2 \subset \cdots \subset K_m \subset \cdots \subset X,$$

such that each one of them is a Peano space (endowed with the topology inherited from X) and $\bigcup_{n \in \mathbb{N}} K_n = X$.

Proposition

Let X be a Hausdorff topological space. TFAE:

- (a) X is a σ -Peano space.
- (b) $\mathcal{CS}_{\infty}(\mathbb{R}, X) \neq \emptyset$.
- (c) $\mathcal{CS}(\mathbb{R}, X) \neq \emptyset$.

Example (Spaces that are σ -Peano)

The Euclidean spaces \mathbb{R}^n and Peano spaces are σ -Peano. For 1 , the Hilbert cube

$$\mathbb{C}_p := \prod_{n \in \mathbb{N}} \left[-\frac{1}{n}, \frac{1}{n} \right] \subset \ell_p,$$

considered as a topological subspace of ℓ_p , is a compact metric space, so it is a Peano space. For each natural k, let $k C_p$ be the Hilbert cube after applying an "k-homogeneous dilation" to it. Therefore, the union of Hilbert cubes $\bigcup_{k \in \mathbb{N}} k C_p$ is a σ -Peano topological vector space, when endowed with the topology inherited from ℓ_p .

Lineability

Peano maps

Example (Spaces that are NOT σ -Peano)

- (a) Every σ -Peano space is separable (continuity preserves separability). In particular, ℓ_{∞} is not σ -Peano.
- (b) No infinite dimensional F-space is σ -compact (i.e., a countable union of compact spaces), and, therefore, is not σ -Peano. This is a consequence of the Baire category theorem combined with the fact that on infinite dimensional topological vector spaces, compact sets have empty interior. In particular, no infinite dimensional Banach space is σ -Peano.

Theorem (Albuquerque, Bernal, Pellegrino, Seoane, 2014)

Let ${\mathcal X}$ be a a $\sigma\mbox{-}{\rm Peano}$ topological vector space. Then

 $\mathcal{CS}_{\infty}(\mathbb{R}^m,\mathcal{X})$

is maximal lineable in $\mathcal{C}(\mathbb{R}^m, \mathcal{X})$.

Constructive techniques?

General (existence) results?

Definition (Aron, Gurariy, Seoane, 2004)

A subset *M* of a topological vector space *X* is said to be **dense-lineable** in *X* if there exists an <u>infinite dimensional</u> linear manifold in $M \cup \{0\}$ and <u>dense</u> in *X*.

lineability (sometimes) implies dense-lineability

Definition

Let A, B be subsets of a vector space X. We say that A is stronger than B if $A + B \subseteq A$.

In general, $0 \notin A$.

The following result will be give us a technique to prove the dense-lineability of certain lineable sets.

Theorem (Aron, García, Pérez, Seoane, 2009)

Let X be a separable Banach space, and consider two subsets A, B of X such that A is lineable and B dense-lineable. If A is stronger than B, then A is dense-lineable.

Applications

$\mathcal{CND}[0,1]$

- Gurariy (1966) showed that $\mathcal{CND}[0,1]$ is lineable.
- ② The set \mathcal{P} of polynomials in [0,1] is dense in $\mathcal{C}[0,1]$.
- $\ensuremath{\mathfrak{O}} \ensuremath{\mathfrak{CND}}[0,1] \ensuremath{\text{ is stronger than }} \mathcal{P}.$
- Thus, CND[0,1] is dense-lineable.

$\mathcal{HC}(D)$

 In 1952, MacLane constructed a universal entire function for the differentiation operator

$$\begin{array}{rcccc} D & : & \mathcal{H}(\mathbb{C}) & \longrightarrow & \mathcal{H}(\mathbb{C}) \\ & & f(z) & \mapsto & f'(z) \end{array}$$

- Thus, there exists an entire function f such that the set {f⁽ⁿ⁾ : n ∈ N} is dense in H(C), endowed with the compact-open topology.
- HC(D) is stronger than \mathcal{P} .
- Therefore, HC(D) is dense-lineable.

\mathcal{C}^∞ non-analytic functions

- The set of non-analytic C^{∞} functions on [-1, 1], as well as the set of functions that are in $C^m \setminus C^n$ (with m < n), are dense-lineable.
- Consider the infinite dimensional subspace S of C[∞][-1,1] given by S = span{e^{-α/x²} : α > 0}. It is clear that every function in S\{0} is non-analytic, since all derivatives at 0 are equal to 0. However the set of C[∞] non-analytic functions is clearly stronger than the set of polynomials, which is dense.

Let us see that the set of \mathcal{C}^{∞} -functions on \mathbb{R} with constant Taylor expansion is maximal-algebrable.

Some applications

\mathcal{C}^∞ non-analytic functions, I

Let $M_0 \subset M$ be the set of \mathcal{C}^{∞} -functions whose Taylor expansion is identically equal to zero. Consider the functions f_{β} , where $\beta \in \mathbb{R}^+$, given by

$$f_{\beta}(x) = \left\{ egin{array}{cc} e^{-eta x^{-2}} & ext{if } x
eq 0, \ 0 & ext{if } x = 0. \end{array}
ight.$$

A straightforward calculation gives that $f_{\beta}^{(n)}(0) = 0$ for every $n \in \mathbb{N}$. Therefore $f_{\beta} \in M_0$.

Define now the following algebra:

$$A:=\mathcal{A}\left(\left\{f_{\gamma}:\gamma\in\mathcal{H}\right\}\right).$$

Ш

The family $\{f_{\gamma} : \gamma \in \mathcal{H}\}$ is algebraically independent. Take any polynomial

$$P(f_{\gamma_1},\ldots,f_{\gamma_k}) := \sum_{i=1}^m \alpha_i \prod_{j=1}^k f_{\gamma_j}^{n_{j,i}},$$

where $\{\alpha_i\}_{i=1}^m \subset \mathbb{R} \setminus \{0\}$, *m*, *k* and all the $n_{j,i}$'s are natural numbers and where $n_{j,a} = n_{j,b}$ for all $j \in \{1, \ldots, k\}$ if and only if a = b. A straight forward calculation shows that

A straight forward calculation shows that

$$P(f_{\gamma_1},\ldots,f_{\gamma_k}) = \sum_{\substack{i=1\\m}}^m \alpha_i e^{-(n_{1,i}\gamma_1+\ldots+n_{k,i}\gamma_k)x^{-2}}$$

=:
$$\sum_{\substack{i=1\\m}}^m \alpha_i e^{-\beta_i x^{-2}}.$$

Since $\{\gamma_i\}_{i=1}^k \subset \mathcal{H}$, we get that all the β_i 's are different positive real numbers.

Seoane (UCM and ICMAT)

Lineability

Some applications

Ш

Thus,

$$P(f_{\gamma_1},\ldots,f_{\gamma_k})(x)=\sum_{i=1}^m\alpha_i f_{\beta_i}(x)=:F(x),$$

where $\beta_i = \beta_j$ if and only if i = j. Suppose now that $F \equiv 0$. Then $F' \equiv 0$ and thus,

$$F'(x) = rac{2}{x^3}\sum_{i=1}^m lpha_ieta_i f_{eta_i}(x) =: rac{2}{x^3}G_1(x) = 0 \quad \forall x \in \mathbb{R}.$$

Therefore $G_1 \equiv 0$ and so we must have $G'_1 \equiv 0$, from which it follows that... $G_2 \equiv 0$... and so on.

IV

Continuing in the same manner we obtain that

$$G_n := \sum_{i=1}^m \alpha_i \beta_i^n f_{\beta_i} \equiv 0 \, \forall \in \mathbb{N} \Rightarrow 0 = \lim_{x \to \infty} G_n(x) = \sum_{i=1}^m \alpha_i \beta_i^n \, \forall \in \mathbb{N}$$

By writing this last equation for n = 0, ..., m - 1, we obtain:

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ \beta_1 & \beta_2 & \beta_3 & \cdots & \beta_m \\ \beta_1^2 & \beta_2^2 & \beta_3^2 & \cdots & \beta_m^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \beta_1^{m-1} & \beta_2^{m-1} & \beta_3^{m-1} & \cdots & \beta_m^{m-1} \end{pmatrix} \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \vdots \\ \alpha_m \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

A Vandermonde-type matrix!!!! Therefore, $\alpha_1 = \ldots = \alpha_k = 0 \Longrightarrow \{f_\gamma : \gamma \in \mathcal{H}\}$ is a. i.

Seoane (UCM and ICMAT)

.

Questions

• Is there any general (existence, non-constructive) result that guarantees the lineability of a given subset of $\mathbb{R}^{\mathbb{R}}$?

• On the other hand... Is there an "easy" way to find out when a set is not lineable at all?

Additivity

- We have given conditions that provide dense lineability for lineable sets.
- However, Is it possible to know when a subset of $\mathbb{R}^{\mathbb{R}}$ is, simply, lineable?
- Let us recall the following concept:

Let $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$. The additivity of \mathcal{F} is given by the following cardinal invariant:

$$\mathcal{A}(\mathcal{F}) = \min\bigl(\{ \operatorname{\mathsf{card}} F : F \subset \mathbb{R}^{\mathbb{R}}, \ \varphi + F \not\subset \mathcal{F}, \ \forall \varphi \in \mathbb{R}^{\mathbb{R}} \,\} \cup \{(2^{\mathfrak{c}})^+\}\bigr),$$

where $(2^{\mathfrak{c}})^+$ denotes the successor of $2^{\mathfrak{c}}$.

$$\mathcal{A}(\mathcal{F}) = \min\bigl(\{\operatorname{\mathsf{card}} F: F \subset \mathbb{R}^{\mathbb{R}}, \ \varphi + F \not\subset \mathcal{F}, \ \forall \varphi \in \mathbb{R}^{\mathbb{R}} \,\} \cup \{(2^{\mathfrak{c}})^+\}\bigr)$$

Additivity:

- Introduced by T. Natkaniec in the 1990's and thoroughly studied in F. E. Jordan's dissertation (1998).
- The additivity of an immense amount of families of functions is known.
- While knowing whether a set is lineable or not can be a very hard problem, finding the additivity of a certain set is (in general) fairly simple.

A (recent) existence result. Additivity and Lineability.

```
Additivity and lineability
```

Theorem (Gámez, Muñoz, Seoane, 2010)

Let $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ star-like. If $\mathfrak{c} < \mathcal{A}(\mathcal{F}) \leq 2^{\mathfrak{c}}$, then \mathcal{F} is $\mathcal{A}(\mathcal{F})$ -lineable.

This previous result allows us to obtain the lineability of many families of *strange* functions.

Some Definitions in Real Analysis

Let $f \in \mathbb{R}^{\mathbb{R}}$. We say that:

- **1.-** $f \in ES(\mathbb{R})$ (*f* is everywhere surjective) if $f(I) = \mathbb{R}$ for every non-trivial interval *I*.
- **2.-** $f \in SES(\mathbb{R})$ (*f* is strongly everywhere surjective) if *f* takes all values *c* times on any interval.
- **3.** $f \in \text{PES}(\mathbb{R})$ (*f* is perfectly everywhere surjective) if for every perfect set *P*, $f(P) = \mathbb{R}$.
- **4.-** $f \in AC(\mathbb{R})$ (*f* is almost continuous, in the sense of J. Stallings) if every open set containing the graph of *f* contains also the graph of some continuous function.
- 5.- If $h: X \to \mathbb{R}$, where X is a topological space, $h \in \text{Conn}(X)$ (h is a connectivity function) if the graph of $h|_C$ is connected for every connected set $C \subset X$. (If $h \in \mathbb{R}^{\mathbb{R}}$, it is equivalent to say that its graph is connected.)

A (recent) existence result. Additivity and Lineability.

- 6.- $f \in \text{Ext}(\mathbb{R})$ (f is extendable) if there is a connectivity function $g : \mathbb{R}^2 \to [0, 1]$ such that f(x) = g(x, 0) for every $x \in \mathbb{R}$.
- 7.- $f \in PR(\mathbb{R})$ (f is a perfect road function) if for every $x \in \mathbb{R}$ there is a perfect set $P \subset R$ such that x is a bilateral limit point of P and $f|_P$ is continuous at x.
- 8.- $f \in PC(\mathbb{R})$ (f is peripherally continuous) if for every $x \in \mathbb{R}$ and pair of open sets $U, V \subset \mathbb{R}$ such that $x \in U$ and $f(x) \in V$ there is an open neighborhood W of x with $\overline{W} \subset U$ and $f(bd(W)) \subset V$.
- **9.-** $f \in SZ(\mathbb{R})$ (*f* is a Sierpiński-Zygmund function) if *f* is not continuous on any set of cardinality \mathfrak{c} .
- **10.-** $f \in \mathcal{D}(\mathbb{R})$ if f is a Darboux function.
A (recent) existence result. Additivity and Lineability.

Some relations between the previous concepts.

Sacks' model/Iterated Perfect Set Model

A (recent) existence result. Additivity and Lineability.

Some relations between other subsets of $\mathbb{R}^{\mathbb{R}}$.

A (recent) existence result. Additivity and Lineability.

Lineability VIA additivity

Here we see that combining the additivity of a certain family plus the GCH we can obtain **sharp** results:

SET	ADDITIVITY	LINEABILITY (ZFC)	+ GCH
$AC(\mathbb{R})$	ec	2°	=
$\mathit{Conn}(\mathbb{R})$	ec	2 [¢]	=
$\mathit{Ext}(\mathbb{R})$	\mathfrak{c}^+	2°	=
$PR(\mathbb{R})$	\mathfrak{c}^+	2°	=
$SZ(\mathbb{R})$	dc	c +	2¢
$J(\mathbb{R})$	ec	2¢	=

 $\begin{aligned} &d_{\mathfrak{c}} = \min\{ \operatorname{card} F \, : \, F \subset \mathbb{R}^{\mathbb{R}}, (\forall \varphi \in \mathbb{R}^{\mathbb{R}}) (\exists f \in F) (\operatorname{card}(f \cap \varphi) = \mathfrak{c}) \} \\ &e_{\mathfrak{c}} = \min\{ \operatorname{card} F \, : \, F \subset \mathbb{R}^{\mathbb{R}}, (\forall \varphi \in \mathbb{R}^{\mathbb{R}}) (\exists f \in F) (\operatorname{card}(f \cap \varphi) < \mathfrak{c}) \} \end{aligned}$

$$\mathfrak{c}^+ \leq d_\mathfrak{c} \leq 2^\mathfrak{c} \qquad \mathfrak{c}^+ \leq e_\mathfrak{c} \leq 2^\mathfrak{c}$$

General "existence" techniques

- 2011 (Kitson and Timoney).
- **2012** (Botelho, Cariello, Fávaro, and Pellegrino): Maximal-spaceability (applied to subsets of certain topological vector sequence spaces).
- 2013 (Bernal, Ordóñez): General technique that can be applied to many frameworks of study, generalizing one of the previous known ones.

some comercials!!!

Richard M. Aron Luis Bernal González Daniel M. Pellegrino Juan B. Seoane Sepúlveda

Seoane (UCM and ICMAT)

Lineability

Other techniques

THANK YOU

FOR YOUR ATTENTION!!!