Spaceability and operator ideals

Francisco L. Hernández, César Ruiz and Víctor M. Sánchez

Complutense University of Madrid (Spain)

2015 May 27th

Víctor M. Sánchez (U.C.M.)

Genericity and small sets in analysis

≣ ► ৰ ≣ ► ≣ ৩৭৫ 2015 May 27th 1 / 24

< 日 > < 同 > < 三 > < 三 >

Lineability and spaceability

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Víctor M. Sánchez (U.C.M.)

Definition (Aron, Gurariy, Seoane, 2005)

Given a topological vector space X, a subset $A \subset X$ is said to be **lineable** if $A \cup \{0\}$ contains an infinite-dimensional linear subspace.

- 4 同 6 4 日 6 4 日 6

Definition (Aron, Gurariy, Seoane, 2005)

Given a topological vector space X, a subset $A \subset X$ is said to be **lineable** if $A \cup \{0\}$ contains an infinite-dimensional linear subspace. The subset A will be called **spaceable** if $A \cup \{0\}$ contains an infinite-dimensional closed linear subspace.

Víctor M. Sánchez (U.C.M.)

Recent results for operator ideals

Víctor M. Sánchez (U.C.M.)

Genericity and small sets in analysis

< 日 > < 同 > < 三 > < 三 >

Theorem (Puglisi, Seoane, 2008)

If *E* and *F* are Banach spaces where *E* has the two series property, then $L(E, F^*) \setminus \prod_1(E, F^*)$ is lineable.

イロト 不得 トイヨト イヨト 二日

Theorem (Puglisi, Seoane, 2008)

If *E* and *F* are Banach spaces where *E* has the two series property, then $L(E, F^*) \setminus \prod_1(E, F^*)$ is lineable.

Theorem (Botelho, Diniz, Pellegrino, 2009)

If *E* is a superreflexive Banach space containing a complemented infinitedimensional subspace with unconditional basis, or *F* is a Banach space having an infinite unconditional basic sequence, then $K(E, F) \setminus \prod_{p}(E, F)$ is lineable for every $p \ge 1$.

Theorem (Puglisi, Seoane, 2008)

If *E* and *F* are Banach spaces where *E* has the two series property, then $L(E, F^*) \setminus \prod_1(E, F^*)$ is lineable.

Theorem (Botelho, Diniz, Pellegrino, 2009)

If *E* is a superreflexive Banach space containing a complemented infinitedimensional subspace with unconditional basis, or *F* is a Banach space having an infinite unconditional basic sequence, then $K(E, F) \setminus \prod_{p}(E, F)$ is lineable for every $p \ge 1$.

Theorem (Kitson, Timoney, 2011)

If *E* is a superreflexive Banach space, then $K(E, F) \setminus \bigcup_{p \ge 1} \prod_{p} (E, F)$ is spaceable.

Víctor M. Sánchez (U.C.M.)

৾৾≣ ▶ ◀ ৗ ▶ ॊ • ੭०. 2015 May 27th 3 / 24

< 日 > < 同 > < 三 > < 三 >

Our aim

Víctor M. Sánchez (U.C.M.)

• We will consider operator ideals in the sense of Pietsch I_1 and I_2 and Banach spaces E and F such that $I_1(E, F) \setminus I_2(E, F)$ is non-empty.

< □ > < 同 > < 回 >

- We will consider operator ideals in the sense of Pietsch *I*₁ and *I*₂ and Banach spaces *E* and *F* such that *I*₁(*E*, *F*) \ *I*₂(*E*, *F*) is non-empty.
- Is $I_1(E,F) \setminus I_2(E,F)$ spaceable?

イロト イポト イヨト イヨト 二日

- We will consider operator ideals in the sense of Pietsch *I*₁ and *I*₂ and Banach spaces *E* and *F* such that *I*₁(*E*, *F*) \ *I*₂(*E*, *F*) is non-empty.
- Is $I_1(E, F) \setminus I_2(E, F)$ spaceable?
- If *I*₁ and *I*₂ are Banach operator ideals such that *I*₂ ⊂ *I*₁ continuously and *I*₂ is not closed in *I*₁, then *I*₁(*E*, *F*) \ *I*₂(*E*, *F*) is spaceable.

Operator ideals

*ロト *部ト *注ト *注ト

Víctor M. Sánchez (U.C.M.)

Let \mathfrak{B} denote the class of all Banach spaces and let L denote the class of all bounded linear operators between Banach spaces.

< 🗇 > < 🖃 >

Let \mathfrak{B} denote the class of all Banach spaces and let L denote the class of all bounded linear operators between Banach spaces. An **operator ideal** I is a "mapping" $I : \mathfrak{B} \times \mathfrak{B} \longrightarrow 2^{L}$ satisfying the following conditions:

Let \mathfrak{B} denote the class of all Banach spaces and let L denote the class of all bounded linear operators between Banach spaces. An **operator ideal** I is a "mapping" $I: \mathfrak{B} \times \mathfrak{B} \longrightarrow 2^L$ satisfying the following conditions:

For each pair of Banach spaces E and F, I(E, F) (or I(E) if E = F) is a subspace of the space L(E, F) (or L(E) if E = F) of bounded linear operators from E to F containing all finite-rank operators.

イロト イポト イヨト イヨト 二日

Let \mathfrak{B} denote the class of all Banach spaces and let L denote the class of all bounded linear operators between Banach spaces. An **operator ideal** I is a "mapping" $I: \mathfrak{B} \times \mathfrak{B} \longrightarrow 2^L$ satisfying the following conditions:

- For each pair of Banach spaces E and F, I(E, F) (or I(E) if E = F) is a subspace of the space L(E, F) (or L(E) if E = F) of bounded linear operators from E to F containing all finite-rank operators.
- If in a scheme of bounded linear operators $E_0 \xrightarrow{S_1} E \xrightarrow{T} F \xrightarrow{S_2} F_0$ we have $T \in I(E, F)$, then $S_2 \circ T \circ S_1 \in I(E_0, F_0)$.

Ideal norms

Víctor M. Sánchez (U.C.M.)

An **ideal norm** defined on an ideal I is a rule $\|\cdot\|_I$ that assigns to every operator $T \in I$ a non-negative number $\|T\|_I$ satisfying the following conditions:

Víctor M. Sánchez (U.C.M.)

Definition

An **ideal norm** defined on an ideal I is a rule $\|\cdot\|_I$ that assigns to every operator $T \in I$ a non-negative number $\|T\|_I$ satisfying the following conditions:

•
$$||x^* \otimes y||_I = ||x^*||_{E^*} ||y||_F$$
 for $x^* \in E^*, y \in F$ where $(x^* \otimes y)(x) = x^*(x)y$ for $x \in E$.

・ロト ・同ト ・ヨト ・ヨト

Víctor M. Sánchez (U.C.M.)

Definition

An **ideal norm** defined on an ideal I is a rule $\|\cdot\|_I$ that assigns to every operator $T \in I$ a non-negative number $\|T\|_I$ satisfying the following conditions:

•
$$||x^* \otimes y||_I = ||x^*||_{E^*} ||y||_F$$
 for $x^* \in E^*, y \in F$ where $(x^* \otimes y)(x) = x^*(x)y$ for $x \in E$.

•
$$||S + T||_I \le ||S||_I + ||T||_I$$
 for $S, T \in I(E, F)$.

《曰》《聞》 《臣》 《臣》

An **ideal norm** defined on an ideal *I* is a rule $\|\cdot\|_I$ that assigns to every operator $T \in I$ a non-negative number $\|T\|_I$ satisfying the following conditions:

•
$$||x^* \otimes y||_I = ||x^*||_{E^*} ||y||_F$$
 for $x^* \in E^*, y \in F$ where $(x^* \otimes y)(x) = x^*(x)y$ for $x \in E$.

• $||S + T||_I \le ||S||_I + ||T||_I$ for $S, T \in I(E, F)$.

• $||S_2 \circ T \circ S_1||_I \le ||S_2|| ||T||_I ||S_1||$ for $S_2 \in L(F, F_0)$, $T \in I(E, F)$ and $S_1 \in L(E_0, E)$.

イロト イポト イヨト イヨト 二日

An **ideal norm** defined on an ideal *I* is a rule $\|\cdot\|_I$ that assigns to every operator $T \in I$ a non-negative number $\|T\|_I$ satisfying the following conditions:

•
$$||x^* \otimes y||_I = ||x^*||_{E^*} ||y||_F$$
 for $x^* \in E^*, y \in F$ where $(x^* \otimes y)(x) = x^*(x)y$ for $x \in E$.

•
$$||S + T||_I \le ||S||_I + ||T||_I$$
 for $S, T \in I(E, F)$.

• $||S_2 \circ T \circ S_1||_I \le ||S_2|| ||T||_I ||S_1||$ for $S_2 \in L(F, F_0)$, $T \in I(E, F)$ and $S_1 \in L(E_0, E)$.

• An ideal norm is a norm.

- * 同 * * ヨ * * ヨ * - ヨ

An **ideal norm** defined on an ideal *I* is a rule $\|\cdot\|_I$ that assigns to every operator $T \in I$ a non-negative number $\|T\|_I$ satisfying the following conditions:

•
$$||x^* \otimes y||_I = ||x^*||_{E^*} ||y||_F$$
 for $x^* \in E^*, y \in F$ where $(x^* \otimes y)(x) = x^*(x)y$ for $x \in E$.

•
$$||S + T||_I \le ||S||_I + ||T||_I$$
 for $S, T \in I(E, F)$.

- $||S_2 \circ T \circ S_1||_I \le ||S_2|| ||T||_I ||S_1||$ for $S_2 \in L(F, F_0)$, $T \in I(E, F)$ and $S_1 \in L(E_0, E)$.
- An ideal norm is a norm.
- The usual operator norm of L(E, F) is an ideal norm.

- * 伺 * * き * * き * … き

An **ideal norm** defined on an ideal *I* is a rule $\|\cdot\|_I$ that assigns to every operator $T \in I$ a non-negative number $\|T\|_I$ satisfying the following conditions:

•
$$||x^* \otimes y||_I = ||x^*||_{E^*} ||y||_F$$
 for $x^* \in E^*, y \in F$ where $(x^* \otimes y)(x) = x^*(x)y$ for $x \in E$.

• $||S + T||_I \le ||S||_I + ||T||_I$ for $S, T \in I(E, F)$.

- $||S_2 \circ T \circ S_1||_I \le ||S_2|| ||T||_I ||S_1||$ for $S_2 \in L(F, F_0)$, $T \in I(E, F)$ and $S_1 \in L(E_0, E)$.
- An ideal norm is a norm.
- The usual operator norm of L(E, F) is an ideal norm.
- $||T|| \le ||T||_I$ for $T \in I$.

くロ とくぼ とくほ とくほ とうしょう

The Definition

Víctor M. Sánchez (U.C.M.)

Genericity and small sets in analysis

돌▶ ◀ 돌▶ 돌 ∽ ९. 2015 May 27th 7 / 24

A Banach space *E* is said to be σ -**reproducible** if there exists a sequence $(E_n)_{n \in \mathbb{N}}$ of complemented subspaces, where $P_n : E \longrightarrow E_n$ is a bounded projection, satisfying the following conditions:

| 4 同 1 4 回 1 4 回 1

Víctor M. Sánchez (U.C.M.)

Definition

A Banach space *E* is said to be σ -**reproducible** if there exists a sequence $(E_n)_{n \in \mathbb{N}}$ of complemented subspaces, where $P_n : E \longrightarrow E_n$ is a bounded projection, satisfying the following conditions:

• Each E_n is isomorphic to E.

- 4 同 ト 4 ヨ ト 4 ヨ ト

A Banach space *E* is said to be σ -**reproducible** if there exists a sequence $(E_n)_{n \in \mathbb{N}}$ of complemented subspaces, where $P_n : E \longrightarrow E_n$ is a bounded projection, satisfying the following conditions:

- Each E_n is isomorphic to E.
- $P_i \circ P_j = 0$ if $i \neq j$.

Víctor M. Sánchez (U.C.M.)

・ロト ・同ト ・ヨト ・ヨト

A Banach space *E* is said to be σ -**reproducible** if there exists a sequence $(E_n)_{n \in \mathbb{N}}$ of complemented subspaces, where $P_n : E \longrightarrow E_n$ is a bounded projection, satisfying the following conditions:

- Each E_n is isomorphic to E.
- $P_i \circ P_j = 0$ if $i \neq j$.
- The projections $\widetilde{P_k} = \sum_{n=1}^k P_n : E \longrightarrow \bigoplus_{n=1}^k E_n$ are uniformly bounded for all $k \in \mathbb{N}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

A Banach space *E* is said to be σ -**reproducible** if there exists a sequence $(E_n)_{n \in \mathbb{N}}$ of complemented subspaces, where $P_n : E \longrightarrow E_n$ is a bounded projection, satisfying the following conditions:

- Each E_n is isomorphic to E.
- $P_i \circ P_j = 0$ if $i \neq j$.
- The projections $\widetilde{P_k} = \sum_{n=1}^k P_n : E \longrightarrow \bigoplus_{n=1}^k E_n$ are uniformly bounded for all $k \in \mathbb{N}$.
- This is an isomorphic property.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

A Banach space *E* is said to be σ -**reproducible** if there exists a sequence $(E_n)_{n \in \mathbb{N}}$ of complemented subspaces, where $P_n : E \longrightarrow E_n$ is a bounded projection, satisfying the following conditions:

- Each E_n is isomorphic to E.
- $P_i \circ P_j = 0$ if $i \neq j$.
- The projections $\widetilde{P_k} = \sum_{n=1}^k P_n : E \longrightarrow \bigoplus_{n=1}^k E_n$ are uniformly bounded for all $k \in \mathbb{N}$.
- This is an isomorphic property.
- If *E* and *F* are σ -reproducible Banach spaces, then $E \oplus F$ and E^* are also σ -reproducible.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Rearrangement invariant spaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Víctor M. Sánchez (U.C.M.)

Víctor M. Sánchez (U.C.M.)

Given a measure space (Ω, λ) , where $\Omega = [0, 1], [0, \infty)$ and λ is the Lebesgue measure, or $\Omega = \mathbb{N}$ and λ is the counting measure, the **distribution func**tion λ_x associated to a scalar measurable function x on Ω is defined by $\lambda_x(s) = \lambda \{t \in \Omega : |x(t)| > s\}.$

Given a measure space (Ω, λ) , where $\Omega = [0, 1], [0, \infty)$ and λ is the Lebesgue measure, or $\Omega = \mathbb{N}$ and λ is the counting measure, the **distribution func**tion λ_x associated to a scalar measurable function x on Ω is defined by $\lambda_x(s) = \lambda \{t \in \Omega : |x(t)| > s\}$. And the **decreasing rearrangement** function x^* of x is defined by $x^*(t) = \inf\{s \in [0, \infty) : \lambda_x(s) \le t\}$.

Given a measure space (Ω, λ) , where $\Omega = [0, 1], [0, \infty)$ and λ is the Lebesgue measure, or $\Omega = \mathbb{N}$ and λ is the counting measure, the **distribution func**tion λ_x associated to a scalar measurable function x on Ω is defined by $\lambda_x(s) = \lambda \{t \in \Omega : |x(t)| > s\}$. And the **decreasing rearrangement** function x^* of x is defined by $x^*(t) = \inf\{s \in [0, \infty) : \lambda_x(s) \le t\}$.

Definition

A Banach space $(E, \|\cdot\|_E)$ of measurable functions defined on Ω is said to be a **rearrangement invariant space** if the following conditions are satisfied:

< 日 > < 同 > < 三 > < 三 >

Definition

Given a measure space (Ω, λ) , where $\Omega = [0, 1], [0, \infty)$ and λ is the Lebesgue measure, or $\Omega = \mathbb{N}$ and λ is the counting measure, the **distribution func**tion λ_x associated to a scalar measurable function x on Ω is defined by $\lambda_x(s) = \lambda \{t \in \Omega : |x(t)| > s\}$. And the **decreasing rearrangement** function x^* of x is defined by $x^*(t) = \inf\{s \in [0, \infty) : \lambda_x(s) \le t\}$.

Definition

A Banach space $(E, \|\cdot\|_E)$ of measurable functions defined on Ω is said to be a **rearrangement invariant space** if the following conditions are satisfied:

• If
$$y \in E$$
 and $|x| \le |y| \lambda$ -a.e. on Ω , then $x \in E$ and $||x||_E \le ||y||_E$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Given a measure space (Ω, λ) , where $\Omega = [0, 1], [0, \infty)$ and λ is the Lebesgue measure, or $\Omega = \mathbb{N}$ and λ is the counting measure, the **distribution func**tion λ_x associated to a scalar measurable function x on Ω is defined by $\lambda_x(s) = \lambda \{t \in \Omega : |x(t)| > s\}$. And the **decreasing rearrangement** function x^* of x is defined by $x^*(t) = \inf\{s \in [0, \infty) : \lambda_x(s) \le t\}$.

Definition

A Banach space $(E, \|\cdot\|_E)$ of measurable functions defined on Ω is said to be a **rearrangement invariant space** if the following conditions are satisfied:

• If
$$y \in E$$
 and $|x| \le |y| \lambda$ -a.e. on Ω , then $x \in E$ and $||x||_E \le ||y||_E$.

• If $y \in E$ and $\lambda_x = \lambda_y$, then $x \in E$ and $||x||_E = ||y||_E$.

イロト 不得 とうせい かほとう ほ

Rearrangement invariant spaces

Proposition

Every rearrangement invariant space E is σ -reproducible.

3

< E

< □ > < 同 > < 回 > < □ > <

Proposition

Every rearrangement invariant space E is σ -reproducible.

Proof

First, let E be a rearrangement invariant space on [0, 1].

Víctor M. Sánchez (U.C.M.)

・ 同 ト ・ ヨ ト ・ ヨ

Proposition

Every rearrangement invariant space E is σ -reproducible.

Proof

First, let *E* be a rearrangement invariant space on [0, 1]. For every $a \in [0, 1)$ and $r \in (0, 1 - a]$ we consider the complemented subspace

$$E_{a,r} = \{x \in E : \text{supp } x \subseteq [a, a+r]\}$$

and the bounded projection $P_{a,r}: E \longrightarrow E_{a,r}$ given by $P_{a,r}(x) = x\chi_{[a,a+r]}$ for $x \in E$.

イロト 不得 とうせい かほとう ほ

Rearrangement invariant spaces

Proof (cont.)

For a measurable function x we define the linear operators

$$T_{a,r}(x)(t) = x\left(\frac{t-a}{r}\right)\chi_{(a,a+r]}(t)$$

$$S_{a,r}(x)(t) = x((1-t)a + t(a+r))$$

which are bounded from L^{∞} to L^{∞} , from L^1 to L^1 and, then, from *E* to *E* (Calderón-Mitjagin interpolation theorem).

< 17 > <

For a measurable function x we define the linear operators

$$T_{a,r}(x)(t) = x\left(\frac{t-a}{r}\right)\chi_{(a,a+r]}(t)$$

$$S_{a,r}(x)(t) = x((1-t)a + t(a+r))$$

which are bounded from L^{∞} to L^{∞} , from L^1 to L^1 and, then, from E to E (Calderón-Mitjagin interpolation theorem). $(S_{a,r} \circ T_{a,r})(x) = x$ for every $x \in E$, $(T_{a,r} \circ S_{a,r})(x) = x$ for every $x \in E_{a,r}$ and $T_{a,r} : E \longrightarrow E_{a,r}$ and $S_{a,r} : E_{a,r} \longrightarrow E$ are isomorphisms.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For a measurable function x we define the linear operators

$$T_{a,r}(x)(t) = x\left(\frac{t-a}{r}\right)\chi_{(a,a+r]}(t)$$

$$S_{a,r}(x)(t) = x((1-t)a + t(a+r))$$

which are bounded from L^{∞} to L^{∞} , from L^1 to L^1 and, then, from E to E (Calderón-Mitjagin interpolation theorem). $(S_{a,r} \circ T_{a,r})(x) = x$ for every $x \in E$, $(T_{a,r} \circ S_{a,r})(x) = x$ for every $x \in E_{a,r}$ and $T_{a,r} : E \longrightarrow E_{a,r}$ and $S_{a,r} : E_{a,r} \longrightarrow E$ are isomorphisms. For every $n \in \mathbb{N}$ we consider $a_n = 1 - \frac{1}{2^{n-1}}$ and $r_n = \frac{1}{2^n}$. Let $E_n = E_{a_n,r_n}$ and $P_n = P_{a_n,r_n}$. Since $\left\| \widetilde{P_k} \right\| = 1$ for all $k \in \mathbb{N}$, E is σ -reproducible.

イロト イポト イヨト イヨト 三日

Rearrangement invariant spaces

Proof (cont.)

Now, let *E* be a rearrangement invariant space on $[0, \infty)$.

Víctor M. Sánchez (U.C.M.)

Genericity and small sets in analysis

2015 May 27th 11 / 24

э

< ロ > < 同 > < 回 > < 回 >

Now, let *E* be a rearrangement invariant space on $[0, \infty)$. Let $\{A_n : n \in \mathbb{N}\}$ a disjoint sequence of subsets of $[0, \infty)$ where $A_n = \bigcup_{k=1}^{\infty} (a_{n,k}, a_{n,k} + 1]$ for an increasing sequence $(a_{n,k})_{k\in\mathbb{N}} \subset \mathbb{N}$, and the complemented subspaces $E_n = \{x \in E : \text{supp } x \subseteq A_n\}.$

< 日 > < 同 > < 三 > < 三 >

Now, let *E* be a rearrangement invariant space on $[0, \infty)$. Let $\{A_n : n \in \mathbb{N}\}$ a disjoint sequence of subsets of $[0, \infty)$ where $A_n = \bigcup_{k=1}^{\infty} (a_{n,k}, a_{n,k} + 1]$ for an increasing sequence $(a_{n,k})_{k\in\mathbb{N}} \subset \mathbb{N}$, and the complemented subspaces $E_n = \{x \in E : \text{supp } x \subseteq A_n\}$. Given a measurable function *x*, we define

$$T_n(x)(t) = \sum_{k=1}^{\infty} x (t + k - 1 - a_{n,k}) \chi_{(a_{n,k}, a_{n,k} + 1]}(t)$$

$$S_n(x)(t) = \sum_{k=1}^{\infty} x (t + a_{n,k} - k - 1) \chi_{(k-1,k]}(t).$$

Víctor M. Sánchez (U.C.M.)

イロト 不得 とうせい かほとう ほ

Now, let *E* be a rearrangement invariant space on $[0, \infty)$. Let $\{A_n : n \in \mathbb{N}\}$ a disjoint sequence of subsets of $[0, \infty)$ where $A_n = \bigcup_{k=1}^{\infty} (a_{n,k}, a_{n,k} + 1]$ for an increasing sequence $(a_{n,k})_{k\in\mathbb{N}} \subset \mathbb{N}$, and the complemented subspaces $E_n = \{x \in E : \text{supp } x \subseteq A_n\}$. Given a measurable function x, we define

$$T_n(x)(t) = \sum_{k=1}^{\infty} x (t + k - 1 - a_{n,k}) \chi_{(a_{n,k}, a_{n,k} + 1]}(t)$$

$$S_n(x)(t) = \sum_{k=1}^{\infty} x (t + a_{n,k} - k - 1) \chi_{(k-1,k]}(t).$$

 $(T_n(x))^* = x^*$, $(S_n(x))^* \le x^*$ and $(S_n \circ T_n)(x) = x$. Then, $T_n : E \longrightarrow E_n$ is an isometry and $S_n : E_n \longrightarrow E$ is an isomorphism. Follow the [0, 1] case.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Finally, we consider a symmetric sequence space.

Víctor M. Sánchez (U.C.M.)

イロト 不得 トイヨト イヨト 二日

Finally, we consider a symmetric sequence space. Let $\{A_k : k \in \mathbb{N}\}$ be a disjoint partition of \mathbb{N} where the subset A_k is the rank of an injective map $\varphi_k : \mathbb{N} \longrightarrow \mathbb{N}$ for every $k \in \mathbb{N}$.

イロト 不得 とうせい かほとう ほ

Finally, we consider a symmetric sequence space. Let $\{A_k : k \in \mathbb{N}\}$ be a disjoint partition of \mathbb{N} where the subset A_k is the rank of an injective map $\varphi_k : \mathbb{N} \longrightarrow \mathbb{N}$ for every $k \in \mathbb{N}$. For $x = (x_n)_{n \in \mathbb{N}}$ we define the linear operators $T_k(x) = (a_n)_{n \in \mathbb{N}}$ with

$$a_n = \begin{cases} x_m & \text{if } \varphi_k(m) = n \\ 0 & \text{if } n \notin A_k \end{cases}$$

 $S_k(x) = (x_{\varphi_k(n)})_{n \in \mathbb{N}}.$

Víctor M. Sánchez (U.C.M.)

Finally, we consider a symmetric sequence space. Let $\{A_k : k \in \mathbb{N}\}$ be a disjoint partition of \mathbb{N} where the subset A_k is the rank of an injective map $\varphi_k : \mathbb{N} \longrightarrow \mathbb{N}$ for every $k \in \mathbb{N}$. For $x = (x_n)_{n \in \mathbb{N}}$ we define the linear operators $T_k(x) = (a_n)_{n \in \mathbb{N}}$ with

$$a_n = \begin{cases} x_m & \text{if } \varphi_k(m) = n \\ 0 & \text{if } n \notin A_k \end{cases}$$

 $S_k(x) = (x_{\varphi_k(n)})_{n \in \mathbb{N}}$. If $E_k = \{x \in E : \text{supp } x \subseteq A_k\}$, then $T_k : E \longrightarrow E_k$ is an isometry and $S_k : E_k \longrightarrow E$ is an isomorphism. And reasoning again as in the [0, 1] case we obtain the result.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

The space C[0, 1]

Víctor M. Sánchez (U.C.M.)

The space C[0,1]

Víctor M. Sánchez (U.C.M.)

Proposition

The space C[0,1] is σ -reproducible.

The space C[0, 1]

Proposition

The space C[0,1] is σ -reproducible.

Proof

Given 0 < a < b < 1, C[a, b] is isomorphic to its closed subspace $C_0[a, b] = \{f \in C[a, b] : f(a) = f(b) = 0\}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

The space C[0, 1]

Proposition

The space C[0,1] is σ -reproducible.

Proof

Given 0 < a < b < 1, C[a, b] is isomorphic to its closed subspace $C_0[a, b] = \{f \in C[a, b] : f(a) = f(b) = 0\}$. C[0, 1] is isomorphic to $\widehat{C}[a, b] = \{f \in C[0, 1] : f|_{[0,a]} = f|_{[b,1]} = 0\}$ since it is isometric to $C_0[a, b]$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

The space C[0,1]

Proposition

The space C[0,1] is σ -reproducible.

Proof

Given 0 < a < b < 1, C[a, b] is isomorphic to its closed subspace $C_0[a, b] = \{f \in C[a, b] : f(a) = f(b) = 0\}$. C[0, 1] is isomorphic to $\widehat{C}[a, b] = \{f \in C[0, 1] : f|_{[0,a]} = f|_{[b,1]} = 0\}$ since it is isometric to $C_0[a, b]$. $\widehat{C}[a, b]$ is a complemented subspace of C[0, 1]. A bounded projection $P_{[a,b]} : C[0, 1] \longrightarrow \widehat{C}[a, b]$ with $||P_{[a,b]}|| \le 2$ is

$$P_{[a,b]}(f)(x) = \left(f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)\right)\chi_{[a,b]}(x).$$

Víctor M. Sánchez (U.C.M.)

The space C[0, 1]

Proposition

The space C[0,1] is σ -reproducible.

Proof

Given 0 < a < b < 1, C[a, b] is isomorphic to its closed subspace $C_0[a, b] = \{f \in C[a, b] : f(a) = f(b) = 0\}$. C[0, 1] is isomorphic to $\widehat{C}[a, b] = \{f \in C[0, 1] : f|_{[0,a]} = f|_{[b,1]} = 0\}$ since it is isometric to $C_0[a, b]$. $\widehat{C}[a, b]$ is a complemented subspace of C[0, 1]. A bounded projection $P_{[a,b]} : C[0, 1] \longrightarrow \widehat{C}[a, b]$ with $||P_{[a,b]}|| \le 2$ is

$$P_{[a,b]}(f)(x) = \left(f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)\right)\chi_{[a,b]}(x).$$

For an increasing sequence $(a_n)_{n \in \mathbb{N}} \subset (0, 1)$, let $E_n = \widehat{C}[a_n, a_{n+1}]$.

イロト 不得 とくほ とくほ とうしょう

Víctor M. Sánchez (U.C.M.)

Víctor M. Sánchez (U.C.M.)

Theorem

Let I_1 and I_2 be operator ideals such that $I_1(E, F) \setminus I_2(E, F)$ is non-empty for a couple of Banach spaces E and F.

▲ 🗇 🕨 🔺

Let I_1 and I_2 be operator ideals such that $I_1(E, F) \setminus I_2(E, F)$ is non-empty for a couple of Banach spaces E and F. If E or F is σ -reproducible and $I_1(E, F)$ is complete for an ideal norm, then $I_1(E, F) \setminus I_2(E, F)$ is spaceable.

(日)

Let I_1 and I_2 be operator ideals such that $I_1(E, F) \setminus I_2(E, F)$ is non-empty for a couple of Banach spaces E and F. If E or F is σ -reproducible and $I_1(E, F)$ is complete for an ideal norm, then $I_1(E, F) \setminus I_2(E, F)$ is spaceable.

Proof

Let $T \in I_1(E,F) \setminus I_2(E,F)$.

< □ > < 同 > < 回 >

Let I_1 and I_2 be operator ideals such that $I_1(E, F) \setminus I_2(E, F)$ is non-empty for a couple of Banach spaces E and F. If E or F is σ -reproducible and $I_1(E, F)$ is complete for an ideal norm, then $I_1(E, F) \setminus I_2(E, F)$ is spaceable.

Proof

Let $T \in I_1(E, F) \setminus I_2(E, F)$. If E is a σ -reproducible Banach space with isomorphisms $\phi_n : E_n \longrightarrow E$ and bounded projections $P_n : E \longrightarrow E_n$, for every $n \in \mathbb{N}$ we consider the operator $T_n = T \circ \phi_n \circ P_n$ which belongs to $I_1(E, F) \setminus I_2(E, F)$. If $T_n \in I_2(E, F)$, then $T_n|_{E_n} = T \circ \phi_n \in I_2(E_n, F)$.

イロト イポト イヨト イヨト 二日

Let I_1 and I_2 be operator ideals such that $I_1(E, F) \setminus I_2(E, F)$ is non-empty for a couple of Banach spaces E and F. If E or F is σ -reproducible and $I_1(E, F)$ is complete for an ideal norm, then $I_1(E, F) \setminus I_2(E, F)$ is spaceable.

Proof

Let $T \in I_1(E, F) \setminus I_2(E, F)$. If E is a σ -reproducible Banach space with isomorphisms $\phi_n : E_n \longrightarrow E$ and bounded projections $P_n : E \longrightarrow E_n$, for every $n \in \mathbb{N}$ we consider the operator $T_n = T \circ \phi_n \circ P_n$ which belongs to $I_1(E, F) \setminus I_2(E, F)$. If $T_n \in I_2(E, F)$, then $T_n|_{E_n} = T \circ \phi_n \in I_2(E_n, F)$. The sequence $(T_n)_{n \in \mathbb{N}}$ is formed by linearly independent operators. To show this, if $\sum_{n=1}^k a_n T_n = 0$, restricting to E_j we obtain $a_j = 0$ with $1 \le j \le k$. Thus, $I_1(E, F) \setminus I_2(E, F)$ is lineable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Furthermore, $(T_n)_{n \in \mathbb{N}}$ is a basic sequence in $I_1(E, F)$. Indeed, for any integers k < m and any choice of scalars $(\lambda_n)_{n \in \mathbb{N}}$ we have

$$\left\|\sum_{n=1}^{k}\lambda_{n}T_{n}\right\|_{l_{1}}=\left\|\sum_{n=1}^{m}\lambda_{n}T_{n}\circ\widetilde{P_{k}}\right\|_{l_{1}}\leq\left\|\sum_{n=1}^{m}\lambda_{n}T_{n}\right\|_{l_{1}}\left\|\widetilde{P_{k}}\right\|.$$

Víctor M. Sánchez (U.C.M.)

2015 May 27th 15 / 24

イロト イポト イヨト イヨト 二日

Furthermore, $(T_n)_{n \in \mathbb{N}}$ is a basic sequence in $I_1(E, F)$. Indeed, for any integers k < m and any choice of scalars $(\lambda_n)_{n \in \mathbb{N}}$ we have

$$\left\|\sum_{n=1}^{k} \lambda_n T_n\right\|_{I_1} = \left\|\sum_{n=1}^{m} \lambda_n T_n \circ \widetilde{P_k}\right\|_{I_1} \le \left\|\sum_{n=1}^{m} \lambda_n T_n\right\|_{I_1} \left\|\widetilde{P_k}\right\|$$

Let $S \in \overline{[T_n : n \in \mathbb{N}]} \subset I_1(E, F)$ with $S = \sum_{n=1}^{\infty} \lambda_n T_n \neq 0$. Then there exists $n_0 \in \mathbb{N}$ such that $\lambda_{n_0} \neq 0$. We have that $S|_{E_{n_0}} = \lambda_{n_0} T \circ \phi_{n_0} \notin I_2(E_{n_0}, F)$. Thus, $S \notin I_2(E, F)$ and $\overline{[T_n : n \in \mathbb{N}]} \subset I_1(E, F) \setminus I_2(E, F)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Proof (cont.)

If *F* is σ -reproducible with isomorphisms $(\phi_n)_{n \in \mathbb{N}}$, for each $n \in \mathbb{N}$ we consider the operator $T_n = \phi_n^{-1} \circ T$ which belongs to $I_1(E, F) \setminus I_2(E, F)$.

2015 May 27th 16 / 24

イロト 不得 とうせい かほとう ほ

Proof (cont.)

If *F* is σ -reproducible with isomorphisms $(\phi_n)_{n \in \mathbb{N}}$, for each $n \in \mathbb{N}$ we consider the operator $T_n = \phi_n^{-1} \circ T$ which belongs to $I_1(E, F) \setminus I_2(E, F)$. The sequence $(T_n)_{n \in \mathbb{N}}$ is formed by linearly independent operators. Thus, we obtain that $I_1(E, F) \setminus I_2(E, F)$ is lineable.

2015 May 27th 16 / 24

イロト 不得 とうせい かほとう ほ

Proof (cont.)

If *F* is σ -reproducible with isomorphisms $(\phi_n)_{n \in \mathbb{N}}$, for each $n \in \mathbb{N}$ we consider the operator $T_n = \phi_n^{-1} \circ T$ which belongs to $I_1(E, F) \setminus I_2(E, F)$. The sequence $(T_n)_{n \in \mathbb{N}}$ is formed by linearly independent operators. Thus, we obtain that $I_1(E, F) \setminus I_2(E, F)$ is lineable. And $(T_n)_{n \in \mathbb{N}}$ is a basic sequence. Indeed, for any integers k < m and any choice of scalars $(\lambda_n)_{n \in \mathbb{N}}$ we have

$$\left\|\sum_{n=1}^{k} \lambda_n T_n\right\|_{I_1} = \left\|\widetilde{P_k} \circ \sum_{n=1}^{m} \lambda_n T_n\right\|_{I_1} \le \left\|\widetilde{P_k}\right\| \left\|\sum_{n=1}^{m} \lambda_n T_n\right\|_{I_1}$$

Víctor M. Sánchez (U.C.M.)

Genericity and small sets in analysis

2015 May 27th 16 / 24

イロト 不得 トイヨト イヨト 二日

Proof (cont.)

If *F* is σ -reproducible with isomorphisms $(\phi_n)_{n \in \mathbb{N}}$, for each $n \in \mathbb{N}$ we consider the operator $T_n = \phi_n^{-1} \circ T$ which belongs to $I_1(E, F) \setminus I_2(E, F)$. The sequence $(T_n)_{n \in \mathbb{N}}$ is formed by linearly independent operators. Thus, we obtain that $I_1(E, F) \setminus I_2(E, F)$ is lineable. And $(T_n)_{n \in \mathbb{N}}$ is a basic sequence. Indeed, for any integers k < m and any choice of scalars $(\lambda_n)_{n \in \mathbb{N}}$ we have

$$\left\|\sum_{n=1}^{k} \lambda_n T_n\right\|_{I_1} = \left\|\widetilde{P_k} \circ \sum_{n=1}^{m} \lambda_n T_n\right\|_{I_1} \le \left\|\widetilde{P_k}\right\| \left\|\sum_{n=1}^{m} \lambda_n T_n\right\|_{I_1}$$

Let $S \in \overline{[T_n : n \in \mathbb{N}]} \subset I_1(E, F)$, $S = \sum_{n=1}^{\infty} \lambda_n T_n \neq 0$. There exists $n_0 \in \mathbb{N}$ such that $\lambda_{n_0} \neq 0$. If $S \in I_2(E, F)$, then $P_{n_0} \circ S \in I_2(E, F)$, but this is not true because $P_{n_0} \circ S = \lambda_{n_0} T_{n_0}$. Then $\overline{[T_n : n \in \mathbb{N}]} \subset I_1(E, F) \setminus I_2(E, F)$.

Víctor M. Sánchez (U.C.M.)

Consequences

Víctor M. Sánchez (U.C.M.)

If *E* or *F* is a σ -reproducible Banach space, *I* is an operator ideal such that I(E, F) is complete for an ideal norm, and $(I_n)_{n \in \mathbb{N}}$ is a sequence of operator ideals such that $I(E, F) \setminus I_n(E, F)$ is non-empty for every $n \in \mathbb{N}$, then the set $I(E, F) \setminus \bigcup_{n=1}^{\infty} I_n(E, F)$ is spaceable.

イロト イポト イヨト イヨト 二日

Theorem

If *E* or *F* is a σ -reproducible Banach space, *I* is an operator ideal such that I(E, F) is complete for an ideal norm, and $(I_n)_{n \in \mathbb{N}}$ is a sequence of operator ideals such that $I(E, F) \setminus I_n(E, F)$ is non-empty for every $n \in \mathbb{N}$, then the set $I(E, F) \setminus \bigcup_{n=1}^{\infty} I_n(E, F)$ is spaceable.

Proof

Let $S_n \in I(E, F) \setminus I_n(E, F)$ for every $n \in \mathbb{N}$.

・ロト ・同ト ・ヨト ・

Theorem

If *E* or *F* is a σ -reproducible Banach space, *I* is an operator ideal such that I(E, F) is complete for an ideal norm, and $(I_n)_{n \in \mathbb{N}}$ is a sequence of operator ideals such that $I(E, F) \setminus I_n(E, F)$ is non-empty for every $n \in \mathbb{N}$, then the set $I(E, F) \setminus \bigcup_{n=1}^{\infty} I_n(E, F)$ is spaceable.

Proof

Let $S_n \in I(E, F) \setminus I_n(E, F)$ for every $n \in \mathbb{N}$. If E is a σ -reproducible Banach space with isomorphisms $(\phi_n)_{n \in \mathbb{N}}$ and bounded projections $(P_n)_{n \in \mathbb{N}}$, let us consider the operators $S_n \circ \phi_n \circ P_n \in I(E, F) \setminus I_n(E, F)$ for every $n \in \mathbb{N}$.

イロト 不得 トイヨト イヨト 二日

Theorem

If *E* or *F* is a σ -reproducible Banach space, *I* is an operator ideal such that I(E, F) is complete for an ideal norm, and $(I_n)_{n \in \mathbb{N}}$ is a sequence of operator ideals such that $I(E, F) \setminus I_n(E, F)$ is non-empty for every $n \in \mathbb{N}$, then the set $I(E, F) \setminus \bigcup_{n=1}^{\infty} I_n(E, F)$ is spaceable.

Proof

Let $S_n \in I(E, F) \setminus I_n(E, F)$ for every $n \in \mathbb{N}$. If E is a σ -reproducible Banach space with isomorphisms $(\phi_n)_{n \in \mathbb{N}}$ and bounded projections $(P_n)_{n \in \mathbb{N}}$, let us consider the operators $S_n \circ \phi_n \circ P_n \in I(E, F) \setminus I_n(E, F)$ for every $n \in \mathbb{N}$. Then

$$T = \sum_{n=1}^{\infty} \frac{S_n \circ \phi_n \circ P_n}{2^n \|S_n \circ \phi_n \circ P_n\|_I} \in I(E, F) \setminus I_n(E, F).$$

イロト 不得 とうせい かほとう ほ

Proof (cont.)

Now, reasoning as in the proof of the main theorem we can construct a sequence $(T_k)_{k\in\mathbb{N}}$ such that $\overline{[T_k:k\in\mathbb{N}]} \subset I(E,F) \setminus I_n(E,F)$ for every $n\in\mathbb{N}$.

- ・ 同 ト ・ ヨ ト - - ヨ

Proof (cont.)

Víctor M. Sánchez (U.C.M.)

Now, reasoning as in the proof of the main theorem we can construct a sequence $(T_k)_{k\in\mathbb{N}}$ such that $\overline{[T_k:k\in\mathbb{N}]} \subset I(E,F) \setminus I_n(E,F)$ for every $n\in\mathbb{N}$. If F is a σ -reproducible Banach space with isomorphisms $(\phi_n)_{n\in\mathbb{N}}$, let us consider the operators $\phi_n^{-1} \circ S_n \in I(E,F) \setminus I_n(E,F)$ for every $n\in\mathbb{N}$.

Proof (cont.)

Now, reasoning as in the proof of the main theorem we can construct a sequence $(T_k)_{k\in\mathbb{N}}$ such that $\overline{[T_k:k\in\mathbb{N}]} \subset I(E,F) \setminus I_n(E,F)$ for every $n \in \mathbb{N}$. If F is a σ -reproducible Banach space with isomorphisms $(\phi_n)_{n\in\mathbb{N}}$, let us consider the operators $\phi_n^{-1} \circ S_n \in I(E,F) \setminus I_n(E,F)$ for every $n \in \mathbb{N}$. Then

$$T = \sum_{n=1}^{\infty} \frac{\phi_n^{-1} \circ S_n}{2^n \|\phi_n^{-1} \circ S_n\|_{I}}$$

belongs to $I(E, F) \setminus \bigcup_{n=1}^{\infty} I_n(E, F)$.

Víctor M. Sánchez (U.C.M.)

Corollary

Let *E* and *F* be Banach spaces, and $\{I_p : p \in [a, b]\}$ be a family of operator ideals such that $I_p(E, F) \subsetneq I_q(E, F)$ if p < q with continuous inclusion.

イロト イポト イヨト イヨト 二日

Corollary

Let *E* and *F* be Banach spaces, and $\{I_p : p \in [a, b]\}$ be a family of operator ideals such that $I_p(E, F) \subsetneq I_q(E, F)$ if p < q with continuous inclusion. If *E* or *F* is a σ -reproducible Banach space and $I_b(E, F)$ is complete for an ideal norm, then the set $I_b(E, F) \setminus \bigcup_{p < b} I_p(E, F)$ is spaceable.

Víctor M. Sánchez (U.C.M.)

イロト イポト イヨト イヨト 二日

Genericity and small sets in analysis

2015 May 27th 20 / 24

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Víctor M. Sánchez (U.C.M.)

A linear operator T between two Banach spaces E and F is called **strictly singular** (SS) if it fails to be an isomorphism on any infinite-dimensional subspace of E.

A linear operator T between two Banach spaces E and F is called **strictly singular** (SS) if it fails to be an isomorphism on any infinite-dimensional subspace of E.

• $K \subset SS$.

Víctor M. Sánchez (U.C.M.)

A linear operator T between two Banach spaces E and F is called **strictly singular** (SS) if it fails to be an isomorphism on any infinite-dimensional subspace of E.

- $K \subset SS$.
- If $1 \le p, q < \infty$ with $p \ne q$ or $p = q \ne 2$, then the set $SS(L^p, L^q) \setminus K(L^p, L^q)$ is spaceable.

イロト イポト イヨト イヨト 二日

A linear operator T between two Banach spaces E and F is called **strictly singular** (SS) if it fails to be an isomorphism on any infinite-dimensional subspace of E.

- $K \subset SS$.
- If $1 \le p, q < \infty$ with $p \ne q$ or $p = q \ne 2$, then the set $SS(L^p, L^q) \setminus K(L^p, L^q)$ is spaceable.
- If $1 \le p < q < \infty$, then the set $SS(\ell_p, \ell_q) \setminus K(\ell_p, \ell_q)$ is spaceable.

A linear operator T between two Banach spaces E and F is called **strictly singular** (SS) if it fails to be an isomorphism on any infinite-dimensional subspace of E.

- $K \subset SS$.
- If $1 \le p, q < \infty$ with $p \ne q$ or $p = q \ne 2$, then the set $SS(L^p, L^q) \setminus K(L^p, L^q)$ is spaceable.
- If $1 \le p < q < \infty$, then the set $SS(\ell_p, \ell_q) \setminus K(\ell_p, \ell_q)$ is spaceable.
- The set SS(E, c₀) \ K(E, c₀) is spaceable for every symmetric sequence space E ≠ c₀.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Definition

A Banach space *E* has the **Kato property** when SS(E) = K(E).

イロト 不得 とうせい かほとう ほ

Definition

A Banach space *E* has the **Kato property** when SS(E) = K(E).

Corollary

If *E* is a σ -reproducible Banach space, then the set $SS(E)\setminus K(E)$ is spaceable if and only if *E* does not have the Kato property.

イロト イポト イヨト イヨト 二日

Definition

A Banach space *E* has the **Kato property** when SS(E) = K(E).

Corollary

If *E* is a σ -reproducible Banach space, then the set $SS(E)\setminus K(E)$ is spaceable if and only if *E* does not have the Kato property.

For Lorentz function spaces L^{p,q}[0,1] with 1 the set SS(L^{p,q}) \ K(L^{p,q}) is spaceable if and only if q ≠ 2.

A Banach space *E* has the **Kato property** when SS(E) = K(E).

Corollary

If *E* is a σ -reproducible Banach space, then the set $SS(E)\setminus K(E)$ is spaceable if and only if *E* does not have the Kato property.

- For Lorentz function spaces $L^{p,q}[0,1]$ with 1 , $the set <math>SS(L^{p,q}) \setminus K(L^{p,q})$ is spaceable if and only if $q \ne 2$.
- For 2-convex (or 2-concave) Orlicz spaces $L^{\varphi}[0,1]$ it holds that $SS(L^{\varphi}) \setminus K(L^{\varphi})$ is spaceable if and only if the associated set $E_{\varphi}^{\infty} \neq \{t^2\}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Genericity and small sets in analysis

イロト 不得 トイヨト イヨト 二日

Víctor M. Sánchez (U.C.M.)

A linear operator T between two Banach spaces E and F is called **finitely** strictly singular (FSS) if there do not exist a number c > 0 and a sequence of subspaces E_n of E with dim $(E_n) = n$ such that $||T(x)|| \ge c||x||$ for all $x \in \bigcup_{n=1}^{\infty} E_n$.

イロト イポト イヨト イヨト 二日

A linear operator T between two Banach spaces E and F is called **finitely** strictly singular (FSS) if there do not exist a number c > 0 and a sequence of subspaces E_n of E with dim $(E_n) = n$ such that $||T(x)|| \ge c||x||$ for all $x \in \bigcup_{n=1}^{\infty} E_n$.

• $K \subset FSS \subset SS$.

イロト イポト イヨト ・ヨ

A linear operator T between two Banach spaces E and F is called **finitely** strictly singular (FSS) if there do not exist a number c > 0 and a sequence of subspaces E_n of E with dim $(E_n) = n$ such that $||T(x)|| \ge c||x||$ for all $x \in \bigcup_{n=1}^{\infty} E_n$.

- $K \subset FSS \subset SS$.
- If $1 , the sets <math>SS(\ell_p, \ell_q) \setminus FSS(\ell_p, \ell_q)$ and $FSS(\ell_p, \ell_q) \setminus K(\ell_p, \ell_q)$ are spaceable.

A linear operator T between two Banach spaces E and F is called **finitely** strictly singular (FSS) if there do not exist a number c > 0 and a sequence of subspaces E_n of E with dim $(E_n) = n$ such that $||T(x)|| \ge c||x||$ for all $x \in \bigcup_{n=1}^{\infty} E_n$.

- $K \subset FSS \subset SS$.
- If $1 , the sets <math>SS(\ell_p, \ell_q) \setminus FSS(\ell_p, \ell_q)$ and $FSS(\ell_p, \ell_q) \setminus K(\ell_p, \ell_q)$ are spaceable.
- For the disc algebra A(D), the set FSS(A(D)) \ K(A(D)) is spaceable but the set SS(A(D)) \ FSS(A(D)) is not spaceable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

イロト 不得 トイヨト イヨト 二日

Víctor M. Sánchez (U.C.M.)

Definition

A linear operator T from a Banach lattice E to a Banach space F is said to be **disjointly strictly singular** (DSS) if there is no disjoint sequence of non-null vectors in E such that the restriction of T to the closed subspace spanned by them is an isomorphism.

Definition

A linear operator T from a Banach lattice E to a Banach space F is said to be **disjointly strictly singular** (DSS) if there is no disjoint sequence of non-null vectors in E such that the restriction of T to the closed subspace spanned by them is an isomorphism.

• This closed subspace of operators is stable with respect to the composition on the left with bounded linear operators.

Definition

A linear operator T from a Banach lattice E to a Banach space F is said to be **disjointly strictly singular** (DSS) if there is no disjoint sequence of non-null vectors in E such that the restriction of T to the closed subspace spanned by them is an isomorphism.

- This closed subspace of operators is stable with respect to the composition on the left with bounded linear operators.
- $SS \subset DSS$.

Definition

A linear operator T from a Banach lattice E to a Banach space F is said to be **disjointly strictly singular** (DSS) if there is no disjoint sequence of non-null vectors in E such that the restriction of T to the closed subspace spanned by them is an isomorphism.

- This closed subspace of operators is stable with respect to the composition on the left with bounded linear operators.
- $SS \subset DSS$.
- For L^p[0, 1]-spaces, DSS(L^p) \ SS(L^p) is spaceable if 1 p</sup> over the closed subspace spanned by Rademacher functions is DSS but not SS).

イロト イポト イヨト イヨト 二日

A linear operator T from a Banach lattice E to a Banach space F is said to be **disjointly strictly singular** (DSS) if there is no disjoint sequence of non-null vectors in E such that the restriction of T to the closed subspace spanned by them is an isomorphism.

- This closed subspace of operators is stable with respect to the composition on the left with bounded linear operators.
- $SS \subset DSS$.
- For L^p[0, 1]-spaces, DSS(L^p) \ SS(L^p) is spaceable if 1 p</sup> over the closed subspace spanned by Rademacher functions is DSS but not SS).
- $DSS(L^q, L^p) \setminus SS(L^q, L^p)$ is spaceable if $1 \le p < q < \infty$ (the inclusion $L^q \hookrightarrow L^p$ is DSS but not SS).

イロト 不得 トイヨト イヨト 二日

Genericity and small sets in analysis

Víctor M. Sánchez (U.C.M.)

イロト 不得 トイヨト イヨト 二日

Definition

If $1 \le p \le q < \infty$, an operator $T \in L(E, F)$ is called (q, p)-summing (or *p*-summing if p = q) if there is a constant *C* so that, for every choice of an integer *n* and vectors $(x_i)_{i=1}^n$ in *E*, we have

$$\left(\sum_{i=1}^{n} \|T(x_i)\|^q\right)^{1/q} \leq C \sup_{\|x^*\| \leq 1} \left(\sum_{i=1}^{n} |x^*(x_i)|^p\right)^{1/p}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Definition

If $1 \le p \le q < \infty$, an operator $T \in L(E, F)$ is called (q, p)-summing (or *p*-summing if p = q) if there is a constant *C* so that, for every choice of an integer *n* and vectors $(x_i)_{i=1}^n$ in *E*, we have

$$\left(\sum_{i=1}^{n} \|T(x_i)\|^q\right)^{1/q} \leq C \sup_{\|x^*\| \leq 1} \left(\sum_{i=1}^{n} |x^*(x_i)|^p\right)^{1/p}$$

• The smallest possible constant C defines a complete ideal norm on this operator ideal, denoted by $\Pi_{q,p}$.

Definition

If $1 \le p \le q < \infty$, an operator $T \in L(E, F)$ is called (q, p)-summing (or *p*-summing if p = q) if there is a constant *C* so that, for every choice of an integer *n* and vectors $(x_i)_{i=1}^n$ in *E*, we have

$$\left(\sum_{i=1}^{n} \|T(x_i)\|^q\right)^{1/q} \leq C \sup_{\|x^*\| \leq 1} \left(\sum_{i=1}^{n} |x^*(x_i)|^p\right)^{1/p}$$

- The smallest possible constant C defines a complete ideal norm on this operator ideal, denoted by $\Pi_{q,p}$.
- For $1 \le p \le r \le q$ it holds $\Pi_{q,q} = \Pi_q \subset \Pi_{q,r} \subset \Pi_{q,p} \subset \Pi_{q,1}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Definition

If $1 \le p \le q < \infty$, an operator $T \in L(E, F)$ is called (q, p)-summing (or *p*-summing if p = q) if there is a constant *C* so that, for every choice of an integer *n* and vectors $(x_i)_{i=1}^n$ in *E*, we have

$$\left(\sum_{i=1}^{n} \|T(x_i)\|^q\right)^{1/q} \leq C \sup_{\|x^*\| \leq 1} \left(\sum_{i=1}^{n} |x^*(x_i)|^p\right)^{1/p}$$

- The smallest possible constant C defines a complete ideal norm on this operator ideal, denoted by $\Pi_{q,p}$.
- For $1 \le p \le r \le q$ it holds $\Pi_{q,q} = \Pi_q \subset \Pi_{q,r} \subset \Pi_{q,p} \subset \Pi_{q,1}$.
- If H is a Hilbert space, then the set Π_{q,1}(H) \ U_{1<p≤q} Π_{q,p}(H) is spaceable if and only if 1 < q < 2.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●