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-
Lineability and spaceability

Definition (Aron, Gurariy, Seoane, 2005)

Given a topological vector space X, a subset A C X is said to be lineable
if AU {0} contains an infinite-dimensional linear subspace. The subset A
will be called spaceable if AU {0} contains an infinite-dimensional closed
linear subspace.
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L(E,F*)\ Ni(E, F*) is lineable.

Theorem (Botelho, Diniz, Pellegrino, 2009)

If E is a superreflexive Banach space containing a complemented infinite-
dimensional subspace with unconditional basis, or F is a Banach space
having an infinite unconditional basic sequence, then K(E, F)\M,(E, F) is
lineable for every p > 1.
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Theorem (Puglisi, Seoane, 2008)

If E and F are Banach spaces where E has the two series property, then
L(E,F*)\ Ni(E, F*) is lineable.

Theorem (Botelho, Diniz, Pellegrino, 2009)

If E is a superreflexive Banach space containing a complemented infinite-
dimensional subspace with unconditional basis, or F is a Banach space
having an infinite unconditional basic sequence, then K(E, F)\M,(E, F) is
lineable for every p > 1.

Theorem (Kitson, Timoney, 2011)

If E is a superreflexive Banach space, then K(E,F) \ U,>; Mp(E,F) is
spaceable.
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@ We will consider operator ideals in the sense of Pietsch /; and /» and
Banach spaces E and F such that 1(E, F) \ k(E, F) is non-empty.
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Our aim

@ We will consider operator ideals in the sense of Pietsch /; and /» and
Banach spaces E and F such that 1(E, F) \ k(E, F) is non-empty.
o Is h(E,F)\ h(E, F) spaceable?

o If /1 and /» are Banach operator ideals such that /, C /1 continuously
and h is not closed in /1, then I1(E, F)\ h(E, F) is spaceable.
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Operator ideals

Let B denote the class of all Banach spaces and let L denote the class of
all bounded linear operators between Banach spaces.
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Operator ideals

Definition
Let B denote the class of all Banach spaces and let L denote the class of
all bounded linear operators between Banach spaces. An operator ideal /
is a “mapping” | : B x B — 2 satisfying the following conditions:
@ For each pair of Banach spaces E and F, I(E,F) (or I(E) if E=F)
is a subspace of the space L(E, F) (or L(E) if E = F) of bounded
linear operators from E to F containing all finite-rank operators.
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Operator ideals

Definition
Let B denote the class of all Banach spaces and let L denote the class of
all bounded linear operators between Banach spaces. An operator ideal /
is a “mapping” | : B x B — 2 satisfying the following conditions:
@ For each pair of Banach spaces E and F, I(E,F) (or I(E) if E=F)
is a subspace of the space L(E, F) (or L(E) if E = F) of bounded
linear operators from E to F containing all finite-rank operators.

@ If in a scheme of bounded linear operators Ey i E l> F i Fo we
have T € I(E,F), then S, 0 T oSy € I(Eo, Fo).
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Ideal norms

Definition
An ideal norm defined on an ideal / is a rule ||- ||, that assigns to every oper-
ator T € | a non-negative number || T||; satisfying the following conditions:

o |Ix*®y|; = |Ix*|le-|lyllr for x* € E*,y € F where
(x* ® y)(x) = x*(x)y for x € E.
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ator T € | a non-negative number || T||; satisfying the following conditions:

o |Ix*®y|; = |Ix*|le-|lyllr for x* € E*,y € F where
(x* ® y)(x) = x*(x)y for x € E.
o IS+ T <|SIli+ T\l for S, T € I(E, F).

Victor M. Sanchez (U.C.M.) Genericity and small sets in analysis 2015 May 27th 6 /24



Ideal norms
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Ideal norms

Definition

An ideal norm defined on an ideal / is a rule ||- ||, that assigns to every oper-
ator T € | a non-negative number || T||; satisfying the following conditions:

o Ix* @yl = [Ix"llellyllF for x* € E*,y € F where
(x* ® y)(x) = x*(x)y for x € E.

o IS+ T <|ISIli+ Tl for S, T € I(E, F).

o [|Soo ToSi|y <||Soll| THilIS1]| for S2 € L(F, Fo), T € I(E, F) and
S1 € L(EQ,E).

@ An ideal norm is a norm.
@ The usual operator norm of L(E, F) is an ideal norm.
o | T||<|ITllfor T € 1.
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Definition
A Banach space E is said to be o-reproducible if there exists a sequence
(En)nen of complemented subspaces, where P, : E — E, is a bounded
projection, satisfying the following conditions:
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projection, satisfying the following conditions:

o Each Ej, is isomorphic to E.

Victor M. Sanchez (U.C.M.) Genericity and small sets in analysis 2015 May 27th 7/24



The Definition

Definition
A Banach space E is said to be o-reproducible if there exists a sequence
(En)nen of complemented subspaces, where P, : E — E, is a bounded
projection, satisfying the following conditions:

o Each Ej, is isomorphic to E.
@ PioP;=0ifi#j.

Victor M. Sanchez (U.C.M.) Genericity and small sets in analysis 2015 May 27th 7/24



The Definition

Definition
A Banach space E is said to be o-reproducible if there exists a sequence
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projection, satisfying the following conditions:

o Each Ej, is isomorphic to E.

@ PioPj=0ifi#j.
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The Definition

Definition
A Banach space E is said to be o-reproducible if there exists a sequence
(En)nen of complemented subspaces, where P, : E — E, is a bounded
projection, satisfying the following conditions:

o Each Ej, is isomorphic to E.

o PioP=0ifi#].

@ The projections P, = er::l P,: E— @E:l E, are uniformly
bounded for all k € N.

@ This is an isomorphic property.
o If E and F are o-reproducible Banach spaces, then E & F and E* are
also o-reproducible.
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Rearrangement invariant spaces

Definition

Given a measure space (2, ), where Q = [0, 1], [0, 00) and A is the Lebesgue
measure, or = N and ) is the counting measure, the distribution func-
tion A\, associated to a scalar measurable function x on  is defined by
Ax(s) = Mt € Q : |x(t)] > s}
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function x* of x is defined by x*(t) = inf{s € [0,00) : Ax(s) < t}.
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measure, or = N and ) is the counting measure, the distribution func-
tion A\, associated to a scalar measurable function x on  is defined by
Ax(s) = Mt € Q : |x(t)] > s}. And the decreasing rearrangement
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Rearrangement invariant spaces

Definition
Given a measure space (2, ), where Q = [0, 1], [0, 00) and A is the Lebesgue
measure, or = N and ) is the counting measure, the distribution func-
tion A\, associated to a scalar measurable function x on  is defined by
Ax(s) = Mt € Q : |x(t)] > s}. And the decreasing rearrangement
function x* of x is defined by x*(t) = inf{s € [0,00) : Ax(s) < t}.

Definition
A Banach space (E, ||-||g) of measurable functions defined on 2 is said to be
a rearrangement invariant space if the following conditions are satisfied:

o If y € E and |x| < |y| A-a.e. on Q, then x € E and ||x||e < |ly|le.
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Rearrangement invariant spaces

Definition
Given a measure space (2, ), where Q = [0, 1], [0, 00) and A is the Lebesgue
measure, or = N and ) is the counting measure, the distribution func-
tion A\, associated to a scalar measurable function x on  is defined by
Ax(s) = Mt € Q : |x(t)] > s}. And the decreasing rearrangement
function x* of x is defined by x*(t) = inf{s € [0,00) : Ax(s) < t}.

Definition
A Banach space (E, ||-||g) of measurable functions defined on 2 is said to be
a rearrangement invariant space if the following conditions are satisfied:

o If y € E and |x| < |y| A-a.e. on Q, then x € E and ||x||e < |ly|le.
o Ify e Eand Ay =\, then x € E and ||x||[g = ||y]|e.
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Every rearrangement invariant space E is o-reproducible.
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Rearrangement invariant spaces

Proposition
Every rearrangement invariant space E is o-reproducible.

First, let E be a rearrangement invariant space on [0, 1].

N
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Rearrangement invariant spaces

Proposition

Every rearrangement invariant space E is o-reproducible.

Proof

First, let E be a rearrangement invariant space on [0, 1]. For every a € [0,1)
and r € (0,1 — a] we consider the complemented subspace

E,r={x€ E:suppxCla,a+r]}

and the bounded projection P,, : E — E,, given by P, ,(x) = XX[a,241]
for x € E.

4
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Rearrangement invariant spaces

Proof (cont.)

For a measurable function x we define the linear operators

t—a

Tar()(t) = x ( ) Xoat (0

Sar(x)(t) = x((1 — t)a+ t(a+r))

which are bounded from L to L*°, from L! to L! and, then, from E to
E (Calderén-Mitjagin interpolation theorem).
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Rearrangement invariant spaces

Proof (cont.)
For a measurable function x we define the linear operators

t—a

Tar()(t) = x ( ) Xoat (0

Sar(x)(t) = x((1 = t)a+ t(a+r))
which are bounded from L to L*°, from L! to L! and, then, from E to
E (Calderén-Mitjagin interpolation theorem). (S, 0 T, ,)(x) = x for every
x € E, (Tar0S,,)(x) = x for every x € E;, and T,, : E — E,,
and S,, : E;, — E are isomorphisms.

Victor M. Sanchez (U.C.M.) Genericity and small sets in analysis 2015 May 27th 10 / 24



Rearrangement invariant spaces

Proof (cont.)

For a measurable function x we define the linear operators

t—a

Tar()(t) = x ( ) Xoat (0

Sar(X)(t) =x((1—t)a+t(a+r))

which are bounded from L to L*°, from L! to L! and, then, from E to
E (Calderén-Mitjagin interpolation theorem). (S, 0 T, ,)(x) = x for every
x € E, (Tar0S,,)(x) = x for every x € E;, and T,, : E — E,,
and S,, : E;, — E are isomorphisms. For every n € N we consider
apn =1-— 2%1 and r, = 2—1n Let E, = E,,r, and P, = P, .. Since

H”PIH — 1 for all k € N, E is o-reproducible.

Victor M. Sanchez (U.C.M.) Genericity and small sets in analysis 2015 May 27th 10 / 24



Rearrangement invariant spaces

Proof (cont.)

Now, let E be a rearrangement invariant space on [0, o).
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Rearrangement invariant spaces

Proof (cont.)
Now, let E be a rearrangement invariant space on [0, 00). Let {A,: n € N}
a disjoint sequence of subsets of [0, 00) where A, = |J;—;(an, ank + 1] for
an increasing sequence (apx)ken C N, and the complemented subspaces

E,={x € E :supp x C A,}.
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Rearrangement invariant spaces

Proof (cont.)
Now, let E be a rearrangement invariant space on [0, 00). Let {A,: n € N}
a disjoint sequence of subsets of [0, 00) where A, = |J;—;(an, ank + 1] for
an increasing sequence (apx)ken C N, and the complemented subspaces
E, = {x € E : supp x C A,}. Given a measurable function x, we define

Ta()(t) =D x(t+k =1 = ank) X(ap pansr1)(t)
k=1
Sn(x)(t) = ZX (t+ank — k= 1) x(k—1,,(t)-
k=1

2015 May 27th 11 /24
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Rearrangement invariant spaces

Proof (cont.)
Now, let E be a rearrangement invariant space on [0, 00). Let {A,: n € N}
a disjoint sequence of subsets of [0, 00) where A, = |J;—;(an, ank + 1] for
an increasing sequence (apx)ken C N, and the complemented subspaces
E, = {x € E : supp x C A,}. Given a measurable function x, we define

Ta(x)(t) = > x(t+ k=1 = ank) X(ay o r11(t)

(Ta(x))* = x*, (Sn(x))" < x* and (Spo Tp)(x) =x. Then, T,: E — E,
is an isometry and S, : E, — E is an isomorphism. Follow the [0, 1] case.
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Rearrangement invariant spaces

Proof (cont.)

Finally, we consider a symmetric sequence space.

Victor M. Sanchez (U.C.M.) Genericity and small sets in analysis 2015 May 27th 12 /24



Rearrangement invariant spaces

Proof (cont.)

Finally, we consider a symmetric sequence space. Let {Ax : kK € N} be a
disjoint partition of N where the subset Ay is the rank of an injective map
vk - N — N for every k € N.
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Rearrangement invariant spaces

Proof (cont.)
Finally, we consider a symmetric sequence space. Let {Ax : kK € N} be a
disjoint partition of N where the subset Ay is the rank of an injective map
vk : N — N for every k € N. For x = (x5)neny We define the linear

operators Ty(x) = (an)nen with

| xm ifpx(m)=n
TV 0 ifng Ag

Sk(X) = (X@k(n))HEN-
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Rearrangement invariant spaces

Proof (cont.)

Finally, we consider a symmetric sequence space. Let {Ax : kK € N} be a
disjoint partition of N where the subset Ay is the rank of an injective map
vk : N — N for every k € N. For x = (x5)neny We define the linear
operators Ty(x) = (an)nen with

| xm ifpx(m)=n
TV 0 ifng Ag

Sk(x) = (Xpp(n))nen- If Ex = {x € E : supp x C Ay}, then Ty : E — Ej
is an isometry and Sy : Ex — E is an isomorphism. And reasoning again
as in the [0, 1] case we obtain the result.
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Proposition

The space CJ0, 1] is o-reproducible.

Proof

Given 0 < a < b < 1, Cla,b] is isomorphic to its closed subspace
Gola, b] = {f € Cla, b] : f(a) = f(b) = 0}.
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-
The space CJ[0, 1]

Proposition

The space CJ0, 1] is o-reproducible.

Proof

Given 0 < a < b < 1, Cla,b] is isomorphic to its closed subspace
Gola, b] = {f € Cla,b] : f(a) = f(b) = 0}. CJ0,1] is isomorphic to
Cla,b] = {f € C[0,1] : fljo,5y = flp,yy = O} since it is isometric to
Co[a, b]
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The space CJ0, 1]

Proposition

The space C|0, 1] is o-reproducible

Proof
Given 0 < a < b < 1, Cla,b] is isomorphic to its closed subspace
Gola, b] = {f € Cla,b] : f(a) = f(b) = 0}. C[0,1] is isomorphic to
6[3 b] = {f € C[0,1] : fljo,5 = flp,y = 0} since it is isometric to
Cola, b]. Cla, b] is a complemented subspace of C[0,1]. A bounded projec-
tion P, 0 C[0,1] — C[a b] with [|Pp, pll < 2'is

a0 = (73 = fla) = =10 3)) sy,
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The space CJ0, 1]

Proposition

The space C|0, 1] is o-reproducible

Proof
Given 0 < a < b < 1, Cla,b] is isomorphic to its closed subspace
Gola, b] = {f € Cla,b] : f(a) = f(b) = 0}. C[0,1] is isomorphic to
6[3 b] = {f € C[0,1] : fljo,5 = flp,y = 0} since it is isometric to
Cola, b]. Cla, b] is a complemented subspace of C[0,1]. A bounded projec-
tion P, 0 C[0,1] — C[a b] with [|Pp, pll < 2'is

a0 = (73 = fla) = =10 3)) sy,

For an increasing sequence (an)nen C (0,1), let £, = Clan, anta]-
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Let /4 and /» be operator ideals such that h(E, F)\ k(E, F) is non-empty
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The Theorem

Theorem

Let /4 and /» be operator ideals such that h(E, F)\ k(E, F) is non-empty
for a couple of Banach spaces E and F. If E or F is o-reproducible and
h(E, F) is complete for an ideal norm, then h(E, F)\ h(E, F) is spaceable.

Proof
Let T € h(E,F)\ h(E,F). If E is a o-reproducible Banach space with
isomorphisms ¢, : E, — E and bounded projections P, : E — E,, for

every n € N we consider the operator T, = T o ¢, o P, which belongs to
h(E,F)\ L(E,F). If T, € h(E,F), then T,|g, = T o, € h(Ep, F).
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]
The Theorem

Theorem
Let /4 and /» be operator ideals such that h(E, F)\ k(E, F) is non-empty
for a couple of Banach spaces E and F. If E or F is o-reproducible and
h(E, F) is complete for an ideal norm, then h(E, F)\ h(E, F) is spaceable.

Proof
Let T € h(E,F)\ h(E,F). If E is a o-reproducible Banach space with
isomorphisms ¢, : E, — E and bounded projections P, : E — E,, for
every n € N we consider the operator T, = T o ¢, o P, which belongs to
h(E,F)\ L(E,F). If T, € h(E,F), then T,|g, = T o, € h(E,, F). The
sequence (T,)nen is formed by linearly independent operators. To show
this, if Zﬁzl an T, = 0, restricting to E; we obtain a; = 0 with 1 < j < k.
Thus, h(E,F)\ k(E,F) is lineable.
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The Theorem

Proof (cont.)
Furthermore, (T,)nen is a basic sequence in l1(E, F). Indeed, for any inte-
gers k < m and any choice of scalars (\,)nen We have

k m m
Z AnTho /PS_I; Z AnTh
n=1 n=1

> AnTn

n=1

[P
h

<
h

h
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The Theorem

Proof (cont.)
Furthermore, (T,)nen is a basic sequence in l1(E, F). Indeed, for any inte-
gers k < m and any choice of scalars (\,)nen We have

k m m
Z AnTho /PS_I; < Z AnTh
n=1 h n=1

> AnTn

n=1

2

h

Let Se[T,:neN]C h(E,F) with § = Z AnTn # 0. Then there exists
=1

no € N such that A\p; # 0. We have that S\E,, =My T 0 bny & h(Eny, F).
Thus, S ¢ h(E,F) and [T,: ne N] C h(E,F)\ h(E,F).

2015 May 27th 15 / 24
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The Theorem

Proof (cont.)
If F is o-reproducible with isomorphisms (¢,)nen, for each n € N we con-
sider the operator T, = ¢, o T which belongs to I1(E, F)\ h(E,F).
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The Theorem

Proof (cont.)
If F is o-reproducible with isomorphisms (¢,)nen, for each n € N we con-
sider the operator T, = ¢, o T which belongs to I1(E, F)\ h(E,F). The
sequence (Tp)nen is formed by linearly independent operators. Thus, we
obtain that h(E, F)\ h(E, F) is lineable.
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The Theorem

Proof (cont.)
If F is o-reproducible with isomorphisms (¢,)nen, for each n € N we con-
sider the operator T,, = ¢, o T which belongs to i(E, F)\ h(E, F). The
sequence (Tp)nen is formed by linearly independent operators. Thus, we
obtain that 1(E, F)\ h(E, F) is lineable. And (T,)nen is a basic sequence.
Indeed, for any integers k < m and any choice of scalars (\,)nen we have

k m m
Z)\nTn ﬁ;oZAnTn ZAnTn
n=1 n=1 n=1

< |7
h

h

h
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The Theorem

Proof (cont.)
If F is o-reproducible with isomorphisms (¢,)nen, for each n € N we con-
sider the operator T,, = ¢, o T which belongs to i(E, F)\ h(E, F). The
sequence (Tp)nen is formed by linearly independent operators. Thus, we
obtain that 1(E, F)\ h(E, F) is lineable. And (T,)nen is a basic sequence.
Indeed, for any integers k < m and any choice of scalars (\,)nen we have

k m m
Z)\nTn ﬁ;oZAnTn ZAnTn
n=1 n=1 n=1

< |7
h

Il Il

Let Se[Tpo:neN] C h(E,F),S= > AT, # 0. There exists np € N

n=1
such that A,y # 0. If S € h(E, F), then Py, oS € h(E, F), but this is not
true because Ppy 0 S = Ap, Tpy. Then [T, :ne N] C h(E,F)\ h(E,F).
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Consequences

If E or F is a o-reproducible Banach space, / is an operator ideal such that
I(E, F) is complete for an ideal norm, and (/,),en is a sequence of operator
ideals such that /(E, F) \ In(E, F) is non-empty for every n € N, then the
set I(E,F)\U,2; I(E, F) is spaceable.
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|
Consequences

Theorem

If E or F is a o-reproducible Banach space, / is an operator ideal such that
I(E, F) is complete for an ideal norm, and (/,),en is a sequence of operator
ideals such that /(E, F) \ In(E, F) is non-empty for every n € N, then the
set I(E,F)\U,2; I(E, F) is spaceable.

Proof
Let S, € I(E, F)\ I,(E, F) for every n € N.

| \
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|
Consequences

Theorem
If E or F is a o-reproducible Banach space, / is an operator ideal such that
I(E, F) is complete for an ideal norm, and (/,),en is a sequence of operator
ideals such that /(E, F) \ In(E, F) is non-empty for every n € N, then the
set I(E,F)\U,2; I(E, F) is spaceable.

| \

Proof

Let S, € I(E, F)\ I,(E, F) for every n € N. If E is a o-reproducible Banach
space with isomorphisms (¢,)nen and bounded projections (Pp)nen, let us
consider the operators S, o ¢, 0 P, € I(E,F)\ In(E, F) for every n € N.

A
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Consequences

Theorem
If E or F is a o-reproducible Banach space, / is an operator ideal such that
I(E, F) is complete for an ideal norm, and (/,),en is a sequence of operator
ideals such that /(E, F) \ In(E, F) is non-empty for every n € N, then the
set I(E,F)\U,2; I(E, F) is spaceable.

Proof
Let S, € I(E, F)\ I,(E, F) for every n € N. If E is a o-reproducible Banach
space with isomorphisms (¢,)nen and bounded projections (Pp)nen, let us
consider the operators S, o ¢, 0 P, € I(E,F)\ In(E, F) for every n € N.
Then

Hsn o¢po Pn”l

o
Sno (lsn o P,
T=> 5 € I(E, F)\ In(E, F).
n=1
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Consequences

Proof (cont.)
Now, reasoning as in the proof of the main theorem we can construct a
sequence (Tk)ken such that [Ty, : ke N] C I(E,F) \ I,(E, F) for every

n € N.

Victor M. Sanchez (U.C.M.) Genericity and small sets in analysis 2015 May 27th 18 / 24



Consequences

Proof (cont.)
Now, reasoning as in the proof of the main theorem we can construct a
sequence (Tk)ken such that [Ty, : ke N] C I(E,F) \ I,(E, F) for every
n € N. If F is a o-reproducible Banach space with isomorphisms (¢n)nen,
let us consider the operators ¢, 0S, € I(E,F)\ I,(E, F) for every n € N.
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Consequences

Proof (cont.)

Now, reasoning as in the proof of the main theorem we can construct a
sequence (Tk)ken such that [Ty, : ke N] C I(E,F) \ I,(E, F) for every
n € N. If F is a o-reproducible Banach space with isomorphisms (¢n)nen,
let us consider the operators ¢, 0S, € I(E,F)\ I,(E, F) for every n € N.

Then
_Z ¢n OS
< 2"|¢n* o Sulls

belongs to I(E, F)\ Ur= In(E, F).
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Consequences

Let E and F be Banach spaces, and {/, : p € [a, b]} be a family of operator
ideals such that I,(E, F) & Iq(E, F) if p < g with continuous inclusion.
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Consequences

Let E and F be Banach spaces, and {/, : p € [a, b]} be a family of operator
ideals such that I,(E, F) & Iq(E, F) if p < g with continuous inclusion. If
E or F is a o-reproducible Banach space and I,(E, F) is complete for an
ideal norm, then the set Ip(E, F) \ U, In(E, F) is spaceable.
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Applications: strictly singular operators

Definition
A linear operator T between two Banach spaces E and F is called strictly
singular (SS) if it fails to be an isomorphism on any infinite-dimensional

subspace of E.
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Applications: strictly singular operators

Definition
A linear operator T between two Banach spaces E and F is called strictly
singular (SS) if it fails to be an isomorphism on any infinite-dimensional

subspace of E.

e KCSS.
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Applications: strictly singular operators

Definition
A linear operator T between two Banach spaces E and F is called strictly
singular (SS) if it fails to be an isomorphism on any infinite-dimensional

subspace of E.

e KCSS.

o If 1 < p,g < oowith p# qor p=gqg#2, then the set
SS(LP,L9)\ K(LP,L9) is spaceable.
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Applications: strictly singular operators

Definition

A linear operator T between two Banach spaces E and F is called strictly
singular (SS) if it fails to be an isomorphism on any infinite-dimensional
subspace of E.

e KCSS.

o If 1 < p,g < oowith p# qor p=gqg#2, then the set
SS(LP,L9)\ K(LP,L9) is spaceable.
o If 1 < p < g < oo, then the set S5(¢p, lq) \ K({p,{q) is spaceable.
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Applications: strictly singular operators

Definition

A linear operator T between two Banach spaces E and F is called strictly
singular (SS) if it fails to be an isomorphism on any infinite-dimensional
subspace of E.

e KCSS.

o If 1 < p,g < oowith p# qor p=gqg#2, then the set
SS(LP,L9)\ K(LP,L9) is spaceable.

o If 1 < p < g < oo, then the set S5(¢p, lq) \ K({p,{q) is spaceable.

e The set SS(E, o) \ K(E, cp) is spaceable for every symmetric
sequence space E # .
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Applications: strictly singular operators

Definition
A Banach space E has the Kato property when SS(E) = K(E).
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Applications: strictly singular operators

Definition
A Banach space E has the Kato property when SS(E) = K(E).

If E is a o-reproducible Banach space, then the set SS(E)\K(E) is spaceable
if and only if E does not have the Kato property.
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Applications: strictly singular operators

Definition
A Banach space E has the Kato property when SS(E) = K(E).

If E is a o-reproducible Banach space, then the set SS(E)\K(E) is spaceable
if and only if E does not have the Kato property.

@ For Lorentz function spaces LP9[0,1] with 1 < p < 00,1 < g < o0,
the set SS(LP9) \ K(LP9) is spaceable if and only if g # 2.
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Applications: strictly singular operators

Definition
A Banach space E has the Kato property when SS(E) = K(E).

If E is a o-reproducible Banach space, then the set SS(E)\K(E) is spaceable
if and only if E does not have the Kato property.

@ For Lorentz function spaces LP9[0,1] with 1 < p < 00,1 < g < o0,
the set SS(LP9) \ K(LP9) is spaceable if and only if g # 2.

@ For 2-convex (or 2-concave) Orlicz spaces L?[0,1] it holds that
SS(L¥) \ K(L?) is spaceable if and only if the associated set

EX # {t°}.
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Applications: finitely strictly singular operators

Definition

A linear operator T between two Banach spaces E and F is called finitely
strictly singular (FSS) if there do not exist a number ¢ > 0 and a sequence
of subspaces E, of E with dim(E,) = n such that || T(x)|| > c||x]|| for all
xeUrl, En.
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Applications: finitely strictly singular operators

Definition

A linear operator T between two Banach spaces E and F is called finitely
strictly singular (FSS) if there do not exist a number ¢ > 0 and a sequence
of subspaces E, of E with dim(E,) = n such that || T(x)|| > c||x]|| for all
xeUrl, En.

e K C FSS C SS.
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Applications: finitely strictly singular operators

Definition

A linear operator T between two Banach spaces E and F is called finitely
strictly singular (FSS) if there do not exist a number ¢ > 0 and a sequence
of subspaces E, of E with dim(E,) = n such that || T(x)|| > c||x]|| for all

xeUrl, En.

e K CFSS5cCSS.
o If 1 < p<q< oo, thesets SS({p,{q) \ FSS(¢p,Lq) and
FS5(4p,¢q) \ K(¢p,{q) are spaceable.
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Applications: finitely strictly singular operators

Definition

A linear operator T between two Banach spaces E and F is called finitely
strictly singular (FSS) if there do not exist a number ¢ > 0 and a sequence
of subspaces E, of E with dim(E,) = n such that || T(x)|| > c||x]|| for all
xeUrl, En.

e K CFSS5cCSS.

o If 1 < p<q< oo, thesets SS({p,{q) \ FSS(¢p,Lq) and
FS5(4p,¢q) \ K(¢p,{q) are spaceable.

@ For the disc algebra A(D), the set FSS(A(D)) \ K(A(D)) is spaceable
but the set SS(A(D)) \ FSS(A(D)) is not spaceable.
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Applications: disjointly strictly singular operators

Definition

A linear operator T from a Banach lattice E to a Banach space F is said
to be disjointly strictly singular (DSS) if there is no disjoint sequence of
non-null vectors in E such that the restriction of T to the closed subspace
spanned by them is an isomorphism.
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Applications: disjointly strictly singular operators

Definition

A linear operator T from a Banach lattice E to a Banach space F is said
to be disjointly strictly singular (DSS) if there is no disjoint sequence of
non-null vectors in E such that the restriction of T to the closed subspace
spanned by them is an isomorphism.

@ This closed subspace of operators is stable with respect to the
composition on the left with bounded linear operators.
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Applications: disjointly strictly singular operators

Definition

A linear operator T from a Banach lattice E to a Banach space F is said
to be disjointly strictly singular (DSS) if there is no disjoint sequence of
non-null vectors in E such that the restriction of T to the closed subspace
spanned by them is an isomorphism.

@ This closed subspace of operators is stable with respect to the
composition on the left with bounded linear operators.

e SS C DSS.

Victor M. Sanchez (U.C.M.) Genericity and small sets in analysis 2015 May 27th 23 /24



-
Applications: disjointly strictly singular operators

Definition

A linear operator T from a Banach lattice E to a Banach space F is said
to be disjointly strictly singular (DSS) if there is no disjoint sequence of
non-null vectors in E such that the restriction of T to the closed subspace
spanned by them is an isomorphism.

@ This closed subspace of operators is stable with respect to the
composition on the left with bounded linear operators.

e SS C DSS.

e For LP[0, 1]-spaces, DSS(LP)\ SS(LP) is spaceable if 1 < p # 2 (the
projection of LP over the closed subspace spanned by Rademacher
functions is DSS but not SS).
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-
Applications: disjointly strictly singular operators

Definition

A linear operator T from a Banach lattice E to a Banach space F is said
to be disjointly strictly singular (DSS) if there is no disjoint sequence of
non-null vectors in E such that the restriction of T to the closed subspace
spanned by them is an isomorphism.

@ This closed subspace of operators is stable with respect to the
composition on the left with bounded linear operators.

e SS C DSS.

e For LP[0, 1]-spaces, DSS(LP)\ SS(LP) is spaceable if 1 < p # 2 (the
projection of LP over the closed subspace spanned by Rademacher
functions is DSS but not SS).

@ DSS(L9,LP)\ SS(L9,LP) is spaceable if 1 < p < g < oo (the
inclusion L9 < LP is DSS but not SS).
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Applications: (g, p)-summing operators
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Applications: (g, p)-summing operators

Definition
If 1 < p<gq< oo, an operator T € L(E,F) is called (g, p)-summing (or
p-summing if p = q) if there is a constant C so that, for every choice of

an integer n and vectors (x;)7_; in E, we have

n 1/q n 1/p
(ZHT(x,-)uq) S oy (Z\x%x,-)v’) .
i=1 x*||<1

i=1
4
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Applications: (g, p)-summing operators

Definition
If 1 < p<gq< oo, anoperator T € L(E,F) is called (g, p)-summing (
p-summing if p = q) if there is a constant C so that, for every choice of

an integer n and vectors (x;)7_; in E, we have

n 1/q 1/p
(Z HT(X,-)H") < C sup (Z |x*(x;)] > .
i—1 [Ix*[I<1

@ The smallest possible constant C defines a complete ideal norm on
this operator ideal, denoted by Il .

|
o |
Q
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Applications: (g, p)-summing operators

Definition
If 1 < p<gq< oo, anoperator T € L(E,F) is called (g, p)-summing (
p-summing if p = q) if there is a constant C so that, for every choice of

an integer n and vectors (x;)7_; in E, we have

n 1/q 1/p
(Z HT(X,-)H") < C sup (Z |x*(x;)] > .
i—1 [Ix*[I<1

@ The smallest possible constant C defines a complete ideal norm on
this operator ideal, denoted by Il .
@ For1<p<r<gqitholdslyq=1T4Clg, Clg,Clgs.

|
o |
Q
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Applications: (g, p)-summing operators

Definition

If 1 < p<gq< oo, an operator T € L(E,F) is called (g, p)-summing (or
p-summing if p = q) if there is a constant C so that, for every choice of
an integer n and vectors (x;)7_; in E, we have

n 1/q 1/p
(ZHT(X,')H('> < C sup (Z\X x;)| > :
i=1

[x*[I<1

@ The smallest possible constant C defines a complete ideal norm on
this operator ideal, denoted by Il .

@ For1<p<r<gqitholdslyq=1T4Clg, Clg,Clgs.

o If H is a Hilbert space, then the set Mg 1(H) \ U;p<q Ma,p(H) is
spaceable if and only if 1 < g < 2.
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