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Lineability and spaceability

Definition (Aron, Gurariy, Seoane, 2005)

Given a topological vector space X , a subset A ⊂ X is said to be lineable
if A ∪ {0} contains an infinite-dimensional linear subspace. The subset A
will be called spaceable if A ∪ {0} contains an infinite-dimensional closed
linear subspace.
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Recent results for operator ideals

Theorem (Puglisi, Seoane, 2008)

If E and F are Banach spaces where E has the two series property, then
L(E ,F ∗) \ Π1(E ,F ∗) is lineable.

Theorem (Botelho, Diniz, Pellegrino, 2009)

If E is a superreflexive Banach space containing a complemented infinite-
dimensional subspace with unconditional basis, or F is a Banach space
having an infinite unconditional basic sequence, then K (E ,F ) \Πp(E ,F ) is
lineable for every p ≥ 1.

Theorem (Kitson, Timoney, 2011)

If E is a superreflexive Banach space, then K (E ,F ) \
⋃

p≥1 Πp(E ,F ) is
spaceable.
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Our aim

We will consider operator ideals in the sense of Pietsch I1 and I2 and
Banach spaces E and F such that I1(E ,F ) \ I2(E ,F ) is non-empty.

Is I1(E ,F ) \ I2(E ,F ) spaceable?

If I1 and I2 are Banach operator ideals such that I2 ⊂ I1 continuously
and I2 is not closed in I1, then I1(E ,F ) \ I2(E ,F ) is spaceable.
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Operator ideals

Definition

Let B denote the class of all Banach spaces and let L denote the class of
all bounded linear operators between Banach spaces. An operator ideal I
is a “mapping” I : B×B −→ 2L satisfying the following conditions:

For each pair of Banach spaces E and F , I (E ,F ) (or I (E ) if E = F )
is a subspace of the space L(E ,F ) (or L(E ) if E = F ) of bounded
linear operators from E to F containing all finite-rank operators.

If in a scheme of bounded linear operators E0
S1−→ E

T−→ F
S2−→ F0 we

have T ∈ I (E ,F ), then S2 ◦ T ◦ S1 ∈ I (E0,F0).
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Ideal norms

Definition

An ideal norm defined on an ideal I is a rule ‖·‖I that assigns to every oper-
ator T ∈ I a non-negative number ‖T‖I satisfying the following conditions:

‖x∗ ⊗ y‖I = ‖x∗‖E∗‖y‖F for x∗ ∈ E ∗, y ∈ F where
(x∗ ⊗ y)(x) = x∗(x)y for x ∈ E .

‖S + T‖I ≤ ‖S‖I + ‖T‖I for S ,T ∈ I (E ,F ).

‖S2 ◦ T ◦ S1‖I ≤ ‖S2‖‖T‖I‖S1‖ for S2 ∈ L(F ,F0), T ∈ I (E ,F ) and
S1 ∈ L(E0,E ).

An ideal norm is a norm.

The usual operator norm of L(E ,F ) is an ideal norm.

‖T‖ ≤ ‖T‖I for T ∈ I .
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The Definition

Definition

A Banach space E is said to be σ-reproducible if there exists a sequence
(En)n∈N of complemented subspaces, where Pn : E −→ En is a bounded
projection, satisfying the following conditions:

Each En is isomorphic to E .

Pi ◦ Pj = 0 if i 6= j .

The projections P̃k =
∑k

n=1 Pn : E −→
⊕k

n=1 En are uniformly
bounded for all k ∈ N.

This is an isomorphic property.

If E and F are σ-reproducible Banach spaces, then E ⊕ F and E ∗ are
also σ-reproducible.
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Rearrangement invariant spaces

Definition

Given a measure space (Ω, λ), where Ω = [0, 1], [0,∞) and λ is the Lebesgue
measure, or Ω = N and λ is the counting measure, the distribution func-
tion λx associated to a scalar measurable function x on Ω is defined by
λx(s) = λ{t ∈ Ω : |x(t)| > s}. And the decreasing rearrangement
function x∗ of x is defined by x∗(t) = inf{s ∈ [0,∞) : λx(s) ≤ t}.

Definition

A Banach space (E , ‖·‖E ) of measurable functions defined on Ω is said to be
a rearrangement invariant space if the following conditions are satisfied:

If y ∈ E and |x | ≤ |y | λ-a.e. on Ω, then x ∈ E and ‖x‖E ≤ ‖y‖E .

If y ∈ E and λx = λy , then x ∈ E and ‖x‖E = ‖y‖E .
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function x∗ of x is defined by x∗(t) = inf{s ∈ [0,∞) : λx(s) ≤ t}.

Definition

A Banach space (E , ‖·‖E ) of measurable functions defined on Ω is said to be
a rearrangement invariant space if the following conditions are satisfied:

If y ∈ E and |x | ≤ |y | λ-a.e. on Ω, then x ∈ E and ‖x‖E ≤ ‖y‖E .

If y ∈ E and λx = λy , then x ∈ E and ‖x‖E = ‖y‖E .
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Rearrangement invariant spaces

Proposition

Every rearrangement invariant space E is σ-reproducible.

Proof

First, let E be a rearrangement invariant space on [0, 1]. For every a ∈ [0, 1)
and r ∈ (0, 1− a] we consider the complemented subspace

Ea,r = {x ∈ E : supp x ⊆ [a, a + r ]}

and the bounded projection Pa,r : E −→ Ea,r given by Pa,r (x) = xχ[a,a+r ]

for x ∈ E .
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Rearrangement invariant spaces

Proof (cont.)

For a measurable function x we define the linear operators

Ta,r (x)(t) = x

(
t − a

r

)
χ(a,a+r ](t)

Sa,r (x)(t) = x((1− t)a + t(a + r))

which are bounded from L∞ to L∞, from L1 to L1 and, then, from E to
E (Calderón-Mitjagin interpolation theorem).

(Sa,r ◦Ta,r )(x) = x for every
x ∈ E , (Ta,r ◦ Sa,r )(x) = x for every x ∈ Ea,r and Ta,r : E −→ Ea,r

and Sa,r : Ea,r −→ E are isomorphisms. For every n ∈ N we consider
an = 1 − 1

2n−1 and rn = 1
2n . Let En = Ean,rn and Pn = Pan,rn . Since∥∥∥P̃k

∥∥∥ = 1 for all k ∈ N, E is σ-reproducible.
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Rearrangement invariant spaces

Proof (cont.)

Now, let E be a rearrangement invariant space on [0,∞).

Let {An : n ∈ N}
a disjoint sequence of subsets of [0,∞) where An =

⋃∞
k=1(an,k , an,k + 1] for

an increasing sequence (an,k)k∈N ⊂ N, and the complemented subspaces
En = {x ∈ E : supp x ⊆ An}. Given a measurable function x , we define

Tn(x)(t) =
∞∑
k=1

x (t + k − 1− an,k)χ(an,k ,an,k+1](t)

Sn(x)(t) =
∞∑
k=1

x (t + an,k − k − 1)χ(k−1,k](t).

(Tn(x))∗ = x∗, (Sn(x))∗ ≤ x∗ and (Sn ◦ Tn)(x) = x . Then, Tn : E −→ En

is an isometry and Sn : En −→ E is an isomorphism. Follow the [0, 1] case.
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Rearrangement invariant spaces

Proof (cont.)

Finally, we consider a symmetric sequence space.

Let {Ak : k ∈ N} be a
disjoint partition of N where the subset Ak is the rank of an injective map
ϕk : N −→ N for every k ∈ N. For x = (xn)n∈N we define the linear
operators Tk(x) = (an)n∈N with

an =

{
xm if ϕk(m) = n
0 if n 6∈ Ak

Sk(x) = (xϕk (n))n∈N. If Ek = {x ∈ E : supp x ⊆ Ak}, then Tk : E −→ Ek

is an isometry and Sk : Ek −→ E is an isomorphism. And reasoning again
as in the [0, 1] case we obtain the result.
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The space C [0, 1]

Proposition

The space C [0, 1] is σ-reproducible.

Proof

Given 0 < a < b < 1, C [a, b] is isomorphic to its closed subspace
C0[a, b] = {f ∈ C [a, b] : f (a) = f (b) = 0}. C [0, 1] is isomorphic to
Ĉ [a, b] = {f ∈ C [0, 1] : f |[0,a] = f |[b,1] = 0} since it is isometric to

C0[a, b]. Ĉ [a, b] is a complemented subspace of C [0, 1]. A bounded projec-
tion P[a,b] : C [0, 1] −→ Ĉ [a, b] with ‖P[a,b]‖ ≤ 2 is

P[a,b](f )(x) =

(
f (x)− f (a)− f (b)− f (a)

b − a
(x − a)

)
χ[a,b](x).

For an increasing sequence (an)n∈N ⊂ (0, 1), let En = Ĉ [an, an+1].
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The Theorem

Theorem

Let I1 and I2 be operator ideals such that I1(E ,F ) \ I2(E ,F ) is non-empty
for a couple of Banach spaces E and F . If E or F is σ-reproducible and
I1(E ,F ) is complete for an ideal norm, then I1(E ,F )\ I2(E ,F ) is spaceable.

Proof

Let T ∈ I1(E ,F ) \ I2(E ,F ). If E is a σ-reproducible Banach space with
isomorphisms φn : En −→ E and bounded projections Pn : E −→ En, for
every n ∈ N we consider the operator Tn = T ◦ φn ◦ Pn which belongs to
I1(E ,F ) \ I2(E ,F ). If Tn ∈ I2(E ,F ), then Tn|En = T ◦ φn ∈ I2(En,F ). The
sequence (Tn)n∈N is formed by linearly independent operators. To show
this, if

∑k
n=1 anTn = 0, restricting to Ej we obtain aj = 0 with 1 ≤ j ≤ k.

Thus, I1(E ,F ) \ I2(E ,F ) is lineable.
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The Theorem

Proof (cont.)

Furthermore, (Tn)n∈N is a basic sequence in I1(E ,F ). Indeed, for any inte-
gers k < m and any choice of scalars (λn)n∈N we have∥∥∥∥∥

k∑
n=1

λnTn

∥∥∥∥∥
I1

=

∥∥∥∥∥
m∑

n=1

λnTn ◦ P̃k

∥∥∥∥∥
I1

≤

∥∥∥∥∥
m∑

n=1

λnTn

∥∥∥∥∥
I1

∥∥∥P̃k

∥∥∥ .

Let S ∈ [Tn : n ∈ N] ⊂ I1(E ,F ) with S =
∞∑
n=1

λnTn 6= 0. Then there exists

n0 ∈ N such that λn0 6= 0. We have that S |En0
= λn0T ◦ φn0 6∈ I2(En0 ,F ).

Thus, S 6∈ I2(E ,F ) and [Tn : n ∈ N] ⊂ I1(E ,F ) \ I2(E ,F ).
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Consequences

Theorem

If E or F is a σ-reproducible Banach space, I is an operator ideal such that
I (E ,F ) is complete for an ideal norm, and (In)n∈N is a sequence of operator
ideals such that I (E ,F ) \ In(E ,F ) is non-empty for every n ∈ N, then the
set I (E ,F ) \

⋃∞
n=1 In(E ,F ) is spaceable.

Proof

Let Sn ∈ I (E ,F )\ In(E ,F ) for every n ∈ N. If E is a σ-reproducible Banach
space with isomorphisms (φn)n∈N and bounded projections (Pn)n∈N, let us
consider the operators Sn ◦ φn ◦ Pn ∈ I (E ,F ) \ In(E ,F ) for every n ∈ N.
Then

T =
∞∑
n=1

Sn ◦ φn ◦ Pn

2n‖Sn ◦ φn ◦ Pn‖I
∈ I (E ,F ) \ In(E ,F ).
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Consequences

Proof (cont.)

Now, reasoning as in the proof of the main theorem we can construct a
sequence (Tk)k∈N such that [Tk : k ∈ N] ⊂ I (E ,F ) \ In(E ,F ) for every
n ∈ N.

If F is a σ-reproducible Banach space with isomorphisms (φn)n∈N,
let us consider the operators φ−1n ◦ Sn ∈ I (E ,F ) \ In(E ,F ) for every n ∈ N.
Then

T =
∞∑
n=1

φ−1n ◦ Sn
2n‖φ−1n ◦ Sn‖I

belongs to I (E ,F ) \
⋃∞

n=1 In(E ,F ).
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Consequences

Corollary

Let E and F be Banach spaces, and {Ip : p ∈ [a, b]} be a family of operator
ideals such that Ip(E ,F )  Iq(E ,F ) if p < q with continuous inclusion.

If
E or F is a σ-reproducible Banach space and Ib(E ,F ) is complete for an
ideal norm, then the set Ib(E ,F ) \

⋃
p<b Ip(E ,F ) is spaceable.
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Applications: strictly singular operators

Definition

A linear operator T between two Banach spaces E and F is called strictly
singular (SS) if it fails to be an isomorphism on any infinite-dimensional
subspace of E .

K ⊂ SS .

If 1 ≤ p, q <∞ with p 6= q or p = q 6= 2, then the set
SS(Lp, Lq) \ K (Lp, Lq) is spaceable.

If 1 ≤ p < q <∞, then the set SS(`p, `q) \ K (`p, `q) is spaceable.

The set SS(E , c0) \ K (E , c0) is spaceable for every symmetric
sequence space E 6= c0.
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Applications: strictly singular operators

Definition

A Banach space E has the Kato property when SS(E ) = K (E ).

Corollary

If E is a σ-reproducible Banach space, then the set SS(E )\K (E ) is spaceable
if and only if E does not have the Kato property.

For Lorentz function spaces Lp,q[0, 1] with 1 < p <∞, 1 ≤ q ≤ ∞,
the set SS(Lp,q) \ K (Lp,q) is spaceable if and only if q 6= 2.

For 2-convex (or 2-concave) Orlicz spaces Lϕ[0, 1] it holds that
SS(Lϕ) \ K (Lϕ) is spaceable if and only if the associated set
E∞ϕ 6= {t2}.
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Applications: finitely strictly singular operators

Definition

A linear operator T between two Banach spaces E and F is called finitely
strictly singular (FSS) if there do not exist a number c > 0 and a sequence
of subspaces En of E with dim(En) = n such that ‖T (x)‖ ≥ c‖x‖ for all
x ∈

⋃∞
n=1 En.

K ⊂ FSS ⊂ SS .

If 1 < p < q <∞, the sets SS(`p, `q) \ FSS(`p, `q) and
FSS(`p, `q) \ K (`p, `q) are spaceable.

For the disc algebra A(D), the set FSS(A(D)) \K (A(D)) is spaceable
but the set SS(A(D)) \ FSS(A(D)) is not spaceable.
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Applications: disjointly strictly singular operators

Definition

A linear operator T from a Banach lattice E to a Banach space F is said
to be disjointly strictly singular (DSS) if there is no disjoint sequence of
non-null vectors in E such that the restriction of T to the closed subspace
spanned by them is an isomorphism.

This closed subspace of operators is stable with respect to the
composition on the left with bounded linear operators.

SS ⊂ DSS .

For Lp[0, 1]-spaces, DSS(Lp) \ SS(Lp) is spaceable if 1 < p 6= 2 (the
projection of Lp over the closed subspace spanned by Rademacher
functions is DSS but not SS).

DSS(Lq, Lp) \ SS(Lq, Lp) is spaceable if 1 ≤ p < q <∞ (the
inclusion Lq ↪→ Lp is DSS but not SS).
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Applications: (q, p)-summing operators

Definition

If 1 ≤ p ≤ q < ∞, an operator T ∈ L(E ,F ) is called (q, p)-summing (or
p-summing if p = q) if there is a constant C so that, for every choice of
an integer n and vectors (xi )

n
i=1 in E , we have(

n∑
i=1

‖T (xi )‖q
)1/q

≤ C sup
‖x∗‖≤1

(
n∑

i=1

|x∗(xi )|p
)1/p

.

The smallest possible constant C defines a complete ideal norm on
this operator ideal, denoted by Πq,p.

For 1 ≤ p ≤ r ≤ q it holds Πq,q = Πq ⊂ Πq,r ⊂ Πq,p ⊂ Πq,1.

If H is a Hilbert space, then the set Πq,1(H) \
⋃

1<p≤q Πq,p(H) is
spaceable if and only if 1 < q < 2.
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