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Micro tangent sets of typical/generic continuous func-
tions

In Mathematical Reviews 97j:28009, the reviewer (Joan Verdera), wrote the

following:

“Tangent measures play, with respect to measures, the same role that deriva-

tives play with respect to functions.

Given a measure µ (locally finite Borel measure on Rn) and a point, one looks

at the measure in a small neighborhood of the point, blows it up, normalizes

suitably and takes a weak star limit in the space of measures.

The result is a tangent measure for µ at the given point.”

With the concept of micro tangent sets from measures we return to con-

tinuous functions and we see that this concept of blowing up and taking

suitable limits, this time in the Hausdorff metric, might be useful to obtain

information about “tangential regularity” of irregular functions.
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The closed cube of side length 2δ > 0 centered

at (x; y) will be denoted by Q((x; y), δ), that is,

Q((x; y), δ) =

{(x′; y′) : |x′ − x| ≤ δ and|y′ − y| ≤ δ}.

Let Q2 be the closed cube of side length 2,

centered at (0; 0), that is, Q((0; 0),1).

D.:For δn > 0 we put

F(f, x0, δn) =
1

δn

(

(

graph(f)∩Q((x0; f(x0)), δn)
)

−(x0; f(x0))

)

,

that is, F(f, x0, δn) is the 1/δn-times enlarged

part of graph(f) belonging to Q((x0; f(x0)), δn)

translated into Q2.

The set F is a micro tangent set (M-tangent

set) of f at x0, that is, F ∈ fMT(x0) if there

exists δn ց 0 such that F(f, x0, δn) converges

to F in the Hausdorff metric.

If f is differentiable at x0 then fMT(x0) consists of one line segment of slope

f ′(x0) passing through the origin.
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By C[−1,1]0 we mean the set of those functions g in C[−1,1] for which

g(0) = 0.

D.:We say that x0 is a universal MT -point for f if graph(g) ∩ Q2 ∈ fMT(x0)

for every g ∈ C[−1,1]0.

The collection of those points (x0; f(x0)) for which x0 is a universal MT -point

of f will be denoted by UMT(f).

A property is typical/generic if functions in C[0,1] not having this property

are of first Baire category.

T.:For any function f ∈ C[0,1] the set UMT(f) is of σ-finite H1-measure.

By a result of R. D. Mauldin and S. C. Williams the graph of the typical

continuous function is of Hausdorff dimension one, but is not of σ-finite H1-

measure.

So, the Theorem above says that most points in the sense of H1-measure

on the graph of the typical continuous function are not universal.
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T.:There is a dense Gδ set G of C[0,1] such that λ(πx(UMT(f))) = 1 for all

f ∈ G. Furthermore, UMT(f) is a dense Gδ subset in the relative topology of

graph(f). Hence, for the typical continuous function in C[0,1] almost every

x ∈ [0,1] is a universal MT -point and a typical point on the graph of f is in

UMT(f).

The next theorem shows that though UMT(f) has large x-projection,

it has small y-projection.

T.:There is a dense Gδ set G of C[0,1] such that λ(πy(UMT(f))) = 0 for

all f ∈ G. Hence any preimage of almost every y in the range of the typical

continuous function is not a UMT -point.

By considering functions gc(x) = f(x)+cx, one can see that UMT(f) projects

to a set of λ-measure zero in any direction

different from the y-axis.This implies that UMT(f) is a quite naturally de-

fined irregular 1-set on the graph of a typical continuous function.

In a joint work with former Ph.D. student Cs. Ráti we considered the ques-

tion:

What happens at other points of the typical continuous function?
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Hölder exponent and singularity spectrum for a locally
bounded function.

D.: Let f ∈ L∞([0,1]d). For h ≥ 0 and x ∈ [0,1]d, the function f belongs to

Ch
x if there are a polynomial P of degree less than [h] and a constant C such

that, for x′ close to x,

|f(x′) − P(x′ − x)| ≤ C|x′ − x|h.

The pointwise Hölder exponent of f at x is hf(x) = sup{h ≥ 0 : f ∈ Ch
x}.

When hf(x) < 1, the pointwise Hölder exponent of f at x is also given by

the formula

hf(x) = lim inf
x′→x

log |f(x′) − f(x)|

log |x′ − x|
.

D.: singularity spectrum of f is defined by

df(h) = dimH Eh
f , whereEh

f = {x : hf(x) = h}.

dimH = Hausdorff dimension, and dim ∅ = −∞ by convention.

We will also use the sets E
h,≤
f = {x : hf(x) ≤ h} ⊃ Eh

f .
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Hölder spectrum of monotone continuous func-
tions

Let d be an integer greater than one.

A function f : [0,1]d → R is continuous monotone increasing in several vari-

ables (in short: MISV) if for all i ∈ {1, ..., d},

the functions f(i)(t) = f(x1, ..., xi−1, t, xi+1, ..., xd)

are continuous monotone increasing.

We set Md = {f ∈ C([0,1]d) : f is MISV}.

The space Md is a separable complete metric space when equipped with the

supremum norm for functions, that we denote by ‖.‖.

The multifractal properties of functions in M1 have been examined by Z. B.

and J. Nagy while the higher n ≥ 2 dimensional cases were studied by Z. B.

and S. Seuret.
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Zamfirescu: the typical monotone continuous function, f is a strictly mono-

tone increasing singular function and its derivative equals 0 wherever it exists.

Of course, f ′ exists almost everywhere in [0,1].

S. Jaffard has studied the multifractal properties of several specific continu-

ous functions. For these functions many interesting methods, for example,

wavelets, Diophantine approximation etc. were used.

It is not difficult to verify that the typical continuous function on [0,1] does

not have multifractal Hölder properties, ( it is monofractal ) in fact, it is

Hölder class 0 everywhere in [0,1]. While the class of typical monotone con-

tinuous functions are of multifractal nature. By studying typical monotone

continuous functions we study typical continuous measures on [0,1].

Multifractal properties of generic measures on [0,1]d were studied by Z.B.

and S. Seuret and on compact subsets of Rd by F. Bayart.
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The typical (generic) properties of functions in M1:

T.: ( Z.B. & J. Nagy ) Consider the space of monotone continuous functions

M1 defined on [0,1].

(i) For every f ∈ M1, for every h ≥ 0, one has df(h) ≤ min(h,1).

(ii) There exists a residual set R1 in M1 such that for every f ∈ R1,

df(h) = h for every h ∈ [0,1], and Eh
f = ∅ if h > 1.

(iii) µf([0,1]\E0,≤
f ) = 0, where µf is the Borel integral of f : f(x) =

∫ x
0 dµf .

By (i) of the above theorem, 0 = dimH E0
f = dimH E

0,≤
f .

(iii) shows that all the “increasing” of f takes place on this set E0
f of zero

Hausdorff dimension.

Since a typical monotone function is strictly monotone increasing, its level

sets are points.

We deduce that heuristically, for “most” levels in the range of f , the corre-

sponding points belong to the zero dimensional set E0
f .
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Assume m ∈ N is given.

We choose a countable dense subset,

{fn}, in M1, such that each fn is con-

tinuously differentiable and f ′
n > 0 on

[0,1].

The auxiliary functions

g∗n(x) and g∗∗n,m(x) are chosen.

Finally we put

gn,m(x) = g∗n(x) + g∗∗n,m(x).
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We have |fn(x) − g∗n(x)| <
1

2n
and 0 ≤ g∗∗n,m(x) ≤ g∗∗n,m(1) = h∗

n,m.

We also have |fn(x) − gn,m(x)| ≤

|fn(x) − g∗n(x)| + h∗
n,m ≤

3

4n

Using ̺n,m =
(hn,m)m

8
<

hn,m

8
we set Gn,m = B(gn,m, ̺n,m) and

Hm = ∪∞
n=mGn,m.

It is clear that Hm is open in M1

and using the density of the functions

{fn} and it is easy to see that Hm is

dense.

To prove the main result we use the residual set F∗ = ∩∞
m=1Hm.
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The higher dimensional results (joint work with S. Seuret):

An upper estimate of the singularity spectrum which is valid for arbitrary

functions in Md.

T.: For all f ∈ Md and h ≥ 0, we have

dimH E
h,≤
f ≤ min(d − 1 + h, d).

In particular, df(h) = dimH(Eh
f ) ≤ min(d − 1 + h, d).

The next theorem shows that for h ∈ [0,1] the generic functions can be as

bad as possible from the multifractal standpoint:

T.: There exists a dense Gδ set R⊂Md such that for all f ∈ R we have

df(h) = d − 1 + h for all h ∈ [0,1]. For these functions, for every h > 1 the

set Eh
f is empty.
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Level sets of MISV functions.

We define for every a ∈ R the level set Lf(a) by

Lf(a) = {x ∈ [0,1]d : f(x) = a}.

It is easy to see that for any continuous function the Hausdorff dimension of

the level sets Lf(a) in the interior of the range of an f ∈ Md is at least d−1,

for every a.

T.: There exists a dense Gδ subset L in Md such that for all f ∈ L the

following holds.

There exist a set Xf⊂[0,1]d and a set

Af⊂(f(0, ...,0), f(1, ...,1)) = (mf , Mf) satisfying:

• dimH Xf = d − 1, dimH Af = 0,

• for every a ∈ (mf , Mf), there is at most one point of Lf(a) which does

not belong to Xf (in other words, Lf(a) ∩ ([0,1]d\Xf) contains at most one

point).

• for every a ∈ (mf , Mf)\Af , Lf(a)⊂Xf .
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Recall:

T.: There exists a dense Gδ subset L in Md such that for all f ∈ L the

following holds.

There exist a set Xf⊂[0,1]d and a set

Af⊂(f(0, ...,0), f(1, ...,1)) = (mf , Mf) satisfying:

• dimH Xf = d − 1, dimH Af = 0,

• for every a ∈ (mf , Mf), there is at most one point of Lf(a) which does

not belong to Xf (in other words, Lf(a) ∩ ([0,1]d\Xf) contains at most one

point).

• for every a ∈ (mf , Mf)\Af , Lf(a)⊂Xf .

In other words, Xf contains Lebesgue-almost every level sets Lf(a), and for

those level sets Lf(a) which are not entirely contained in Xf

(this occurs for a set of values of a of Hausdorff dimension 0),

exactly one point of Lf(a) does not belong to Af .

This entails that our function f is “increasing” only on the small d − 1

dimensional set Xf which has the minimum possible dimension to contain at

least one level set.

Most points in the domain of f belong to [0,1]d\Xf , which can intersect just

“very few” level sets and in no more than one point.

In particular, for all x, x′ ∈ [0,1]d \ Xf (this set has full Lebesgue measure in

[0,1]), f(x) 6= f(x′).
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Convex hull of typical continuous functions

A. Bruckner and J. Haussermann

Let f be a bounded function on [0,1] and let H be the convex hull of the

graph of f .

The boundary of H can be decomposed into the graphs of two functions φ1

and φ2, of which φ1 is convex and φ2 is concave.

These functions are differentiable except, perhaps, on some denumerable

sets.

Even if f is well-behaved, say a Lipschitz function, the infinite exceptional

sets of nondifferentiability may exist.

Surprisingly, for typical continuous f the functions φ1 and φ2 have finite

derivatives everywhere on (0,1) and infinite derivatives at 0 and at 1.
T.:The set of functions in C[0,1] for which φ1 and φ1 have the properties

listed below is residual in C[0,1].
• φ′

1 and φ′
2 exist and are continuous on (0,1);

• φ′
1(0) = −∞, φ′

1(1) = +∞, φ′
2(0) = +∞, and φ′

2(1) = −∞;

• φ′
1 and φ′

2 are unbounded Cantor-like functions.

Z.B. and S. Seuret (work in progress):

T.:The Hölder spectrum of of φj, (j = 1,2): Eh
φj

= ∅, that is dφj
(h) = −∞,

for 0 < h < +∞, dφj
(+∞) = dimH E+∞

φj
= 1, dφj

(0) = 0.

15



Generic convex continuous functions

Denote by Cd the (closed) subspace of convex continuous functions in C[0,1]d.

Z.B. and S. Seuret (work in progress):

There is a residual subset B ⊆ C1 with the following properties:

• B consists of continuously differentiable functions and

f ′′(x) = 0, for a.e. x ∈ [0,1];

• the Hölder singularity spectrum of an f ∈ B is given by

df(h) = −∞, for h ∈ [0,1) ∪ (2,+∞], and df(h) = h − 1, for h ∈ [1,2].

The higher dimensional version:

Z.B. and S. Seuret (work in progress):

There is a residual subset B ⊆ Cp with the following properties:

• B consists of continuously differentiable functions and

f ′′(x) = 0, for a.e. x ∈ [0,1]p;

• the Hölder singularity spectrum of an f ∈ B is given by

df(h) = −∞, for h ∈ [0,1) ∪ (2,+∞], and df(h) = h + d − 2, for h ∈ [1,2].
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Level sets of generic continuous functions,
topological approach
If X is a compact metric space, then C(X, I) denotes the set of continuous

functions from X into the unit interval I endowed with sup norm.

We recall that C(X, I) is a Polish space.

A map is simply a continuous function.

The Bruckner-Garg Theorem:

T.:Suppose X = [0,1]. A generic f ∈ C(X, I) has the property that there is

a countable dense set D ⊆ (min f,max f) such that

(i) f−1(y) is a singleton set if y ∈ {min f,max f},

(ii) f−1(y) is homeomorphic to a Cantor set when y ∈ (min f,max f) \ D,

(iii) f−1(y) is homeomorphic to the union of a Cantor set and an isolated

point when y ∈ D.

The Bruckner-Grag theorem was generalized by Z.B. and U.B. Darji to

generic/typical continuous functions in C(S2, I).

We use S2 to denote the 2-sphere in R3.

We point out C(S2, I) is homeomorphic to the set of all continuous functions

f : R2 → I which have a limit at infinity.
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A continuum is a compact connected metric space. A con-

tinuum is degenerate if it has only one point. Otherwise,

we say that it is nondegenerate.

A continuum is decomposable if it is the union of two proper

subcontinua. Otherwise we call it indecomposable. A con-

tinuum is hereditarily indecomposable if each of its subcon-

tinua is indecomposable.

(On the figure: The buckethandle, or B-J-K continuum (for

Brouwer, Janiszewski and Knaster) which is an indecompos-

able plane continuum. source: Wikipedia.)

By fiber we mean non-empty level sets.

T.:( Krasinkiewicz-Levin ) Let X be a compact metric space.

Then, a generic f ∈ C(X, I) has the property that each of

its fibers is a Bing compactum, a compactum with all com-

ponents hereditarily indecomposable.
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A circle is figure eight-like

A map f from a metric space X onto a metric space Y is an ǫ-map means

that ǫ > 0 and diam(f−1(y)) < ǫ for every y ∈ Y .

We say that continuum X is P -like if for every ǫ > 0, there is an ǫ-map from

X onto P .

A continuum which is arc-like (circle-like) is often called chainable (circularly

chainable). Figure-eight is a continuum homeomorphic to the union of two

circles which intersect in exactly one point (and it is not circle-like).
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Figure eight levels show up at saddle points for smooth maps.
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A pseudoarc is a hereditarily indecomposable continuum which is arc-like.

We recall that up to homeomorphism the pseudoarc is unique.

There are uncountably many nonhomeomorphic pseudocircles, that is hered-

itarily indecomposable continua which are circle-like. However, in the plane

or S2, up to homeomorphism, there is only one pseudocircle.

We call a continuum X ⊆ S2 a Lakes of Wada continuum if it is hereditarily

indecomposable, S2\X has exactly three components and X is the boundary

of each of these components.
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A pseudoarc is a hereditarily indecomposable continuum which is arc-like.

We recall that up to homeomorphism the pseudoarc is unique.

There are uncountably many nonhomeomorphic pseudocircles, that is hered-

itarily indecomposable continua which are circle-like. However, in the plane
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of each of these components.
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The next theorems are from a joint paper with U. B. Darji

T.:A generic f ∈ C(S2, I) has the property that each component of each fiber

of f is either a point, or a hereditarily indecomposable continuum which is

figure-eight-like.

T.:A generic f ∈ C(S2, I) has the property that if

y ∈ (min(f(S2)),max(f(S2))),

then f−1(y) contains a component which is a pseudoarc.

T.:A generic f ∈ C(S2, I) has the property that there is a countable dense

set D ⊆ f(S2) such that for each y ∈ f(S2) every component of f−1(y)

separates S2 into two pieces or less except when y ∈ D. In the latter case,

the same applies to each component with one exception which separates S2

into exactly three pieces.

The above theorems imply that for y ∈ D one component of the level set

f−1(y) is a Lakes of Wada continuum. These Lakes of Wada continua

correspond to the “saddle points” of generic continuous functions of two

variables.
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Level sets of generic continuous functions,
measure theoretical approach
B. Kirchheim:

T.:Let 1 ≤ n < m be given. For any k ≥ 1 we write dk = m− k(m−n). Then

for a typical (generic) continuous mapping f of the unit ball B(0, 1) of Rn

into Rm, and for any k ≥ 2, the set

Mk = {x ∈ B(0,1): card f−1(f(x)) ≥ k} as well as the set f(Mk) are Fσ

sets of Hausdorff dimension dk; moreover, for any nonempty (open) set

U ⊂ B(0,1), both sets U∩Mk and f(U∩Mk) are of non-σ-finite dk-dimensional

measure. For k = 1 the statement concerning f(U ∩ M1) remains true.

T.:Let n ≥ m ≥ 1. Then for a typical (generic) continuous f : [0,1]n → Rm:

(i) int(im f) 6= ∅, ∂(im f) is of Hausdorff dimension m − 1;

(ii) for any y ∈ Rm the level set f−1(y) is of Hausdorff dimension at most

n − m, and it is of non-σ-finite Hn−m measure whenever y ∈ int(im f).

Especially when n = 2 and m = 1, that is we have a map f : [0,1]2 → R

then f−1(y) is of Hausdorff dimension at most 1, and it is of non-σ-finite H1

measure whenever y ∈ int(im f).
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Level sets of generic continuous functions on fractals
Schweitzer competition 2008, problem 8:

Suppose S is the Sierpinski triangle. For the generic continuous function on

S determine the Hausdorff dimension of the level sets f−1(y).

More difficult version (not accepted by the committee):

Suppose S is the Sierpinski carpet. For the generic continuous function on

S determine the Hausdorff dimension of the level sets f−1(y).
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Schweitzer competition 2008, problem 8:

Suppose S is the Sierpinski triangle. For the generic continuous function on

S determine the Hausdorff dimension of the level sets f−1(y).

Answer: dim f−1(y) = 0 for all x ∈ f(S).

More difficult version (not accepted by the committee):

Suppose S is the Sierpinski carpet. For the generic continuous function on

S determine the Hausdorff dimension of the level sets f−1(y).

Answer: dim f−1(y) = log2/ log 3 for all x ∈ intf(S), and f−1(y) consists of

one point if y ∈ {max f(S), min f(S)}.
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A graduate student R. Balka got interested in my Schweitzer problem the

next results are from a joint work with him and M. Elekes :

T.:If K is a compact metric space then there exists exactly one number

d(K) ≥ 0 such that

(i) the Hausdorff dimension of each level set of the generic f ∈ C(K) is at

most d(K);

(ii) For the generic f ∈ C(K) for any ǫ > 0 there exists a non-degenerate

interval If,ǫ such that for any y ∈ If,ǫ we have dim(f−1(y)) ≥ d(K) − ǫ.

D.:Suppose K is a compact subset in a metric space. We say that K is

weakly self similar if there exists r0 > 0 such that for all x ∈ K and 0 < r < r0
there exists Kx,r ⊆ B(x, r) and φx,r : K → Kx,r bilipschitz onto map.

T.:Suppose that the compact metric space K satisfies the above weak self

similarity property. Then for the generic continuous function f ∈ C(K) for

any interior point, y of f(K) we have dim(f−1(y)) = d(K).
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Homeomorphic restrictions of continuous functions

The usual metrics ρ0, and ρ1 on C[0,1], and on C1[0,1], respectively, are

given by

ρ0(f, g) = maxx∈[0,1] |f(x) − g(x)| for f, g ∈ C[0,1], and

ρ1(f, g) = ρ0(f, g) + ρ0(f
′, g′) for f, g ∈ C1[0,1].

B0(f, r) and B1(f, r) are the open balls in the metrics ρ0 and ρ1 respectively.

Suppose F⊂[0,1] nowhere dense, perfect, nonempty.

Prop.: The typical f ∈ C[0,1] is a homeomorphism on F.

More is true.

S. Agronsky, A.M. Bruckner and M. Laczkovich: Dynamics of typical con-

tinuous functions:

T.: Let F⊂[0,1] be of first category. Then ∃ H⊂C[0,1] residual, such that

∀f ∈ H the sets fn(F), n = 0,1, ... are pairwise disjoint and f is one-to-one

on each set, fn(F), n = 0,1, ....
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The next results are from a joint paper with A. Máthé:

Let F be a closed set in [0,1]. Consider the Cartesian product F × F , and

its projections in various directions.

Let us denote by πβ/α the projection onto the line with tangent vector (α, β)

of unit length, that is, α2 + β2 = 1 and

πβ/α(x, y) = αx + βy.

Note that β/α is the slope of the line with tangent vector (α, β).

We say that property P holds for the closed set F⊂[0,1]

if there exists a dense subset H of R for which πh(F × F) ⊂ R is nowhere

dense for every h ∈ H.

That is, the image of F × F is nowhere dense under projections in some

“dense set of directions”.

T.: Let F ⊂ [0,1] be a closed set. If property P holds for F then the typical

C1[0,1] function is one-to-one on F .
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T.: If F ⊂ [0,1] is closed and dimBF < 1/2 then a typical C1[0,1] function

is one-to-one on F .

T.: Let F be a closed subset of [0,1]. If the Hausdorff dimension of F × F

is less than one then a typical C1[0,1] function is one-to-one on F .

T.: Let F ⊂ [0,1] be a self-similar set with OSC of dimension ≤ 1/2. Then

a typical C1[0,1] function is injective on F .
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D.: Suppose 0 < α < 1 and t = (1−α)/2. The middle-α Cantor set, denoted

by Cα, is the self-similar set generated by the similarities

φ1 : x 7→ 1−α
2 x = tx and

φ2 : x 7→ 1 + (x − 1)1−α
2 = (1 − t) + tx.

When α = 1/3 we obtain the usual triadic Cantor set.

Let Φ be the operator on compact subsets of R for which

Φ(F) = φ1(F) ∪ φ2(F).

Put Fn = Φn([0,1]), (n = 0,1, . . .), which is a union of 2n intervals of length

tn.

Then Cα =
⋂∞

n=0 Fn.

T.: A typical C1[0,1] function is injective on Cα if and only if dim(Cα) ≤ 1/2

(that is, 1/2 ≤ α < 1).

T.: There exists a closed set F ⊂ [0,1] of Hausdorff dimension one such

that a typical C1[0,1] function is one-to-one on F .

T.: There exists a closed F⊂[0,1] such that dimBF = 1/2 and the set of

those f ∈ C1[0,1] for which f |F is one-to-one is not dense in C1[0,1].
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